Risk-sensitive Reinforcement Learning Based on Convex Scoring Functions
- URL: http://arxiv.org/abs/2505.04553v2
- Date: Thu, 15 May 2025 10:40:05 GMT
- Title: Risk-sensitive Reinforcement Learning Based on Convex Scoring Functions
- Authors: Shanyu Han, Yang Liu, Xiang Yu,
- Abstract summary: We propose a reinforcement learning framework under a broad class of risk objectives, characterized by convex scoring functions.<n>This class covers many common risk measures, such as variance, Expected Shortfall, entropic Value-at-Risk, and mean-risk utility.<n>We validate our approach in simulation experiments with a financial application in statistical arbitrage trading, demonstrating the effectiveness of the algorithm.
- Score: 8.758206783988404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a reinforcement learning (RL) framework under a broad class of risk objectives, characterized by convex scoring functions. This class covers many common risk measures, such as variance, Expected Shortfall, entropic Value-at-Risk, and mean-risk utility. To resolve the time-inconsistency issue, we consider an augmented state space and an auxiliary variable and recast the problem as a two-state optimization problem. We propose a customized Actor-Critic algorithm and establish some theoretical approximation guarantees. A key theoretical contribution is that our results do not require the Markov decision process to be continuous. Additionally, we propose an auxiliary variable sampling method inspired by the alternating minimization algorithm, which is convergent under certain conditions. We validate our approach in simulation experiments with a financial application in statistical arbitrage trading, demonstrating the effectiveness of the algorithm.
Related papers
- Risk-averse Learning with Non-Stationary Distributions [18.15046585146849]
In this paper, we investigate risk-averse online optimization where the distribution of the random cost changes over time.
We minimize risk-averse objective function using the Conditional Value at Risk (CVaR) as risk measure.
We show that our designed learning algorithm achieves sub-linear dynamic regret with high probability for both convex and strongly convex functions.
arXiv Detail & Related papers (2024-04-03T18:16:47Z) - Risk-Sensitive Soft Actor-Critic for Robust Deep Reinforcement Learning
under Distribution Shifts [11.765000124617186]
We study the robustness of deep reinforcement learning algorithms against distribution shifts within contextual multi-stage optimization problems.
We show that our algorithm is superior to risk-neutral Soft Actor-Critic as well as to two benchmark approaches for robust deep reinforcement learning.
arXiv Detail & Related papers (2024-02-15T14:55:38Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Risk-sensitive Markov Decision Process and Learning under General Utility Functions [3.069335774032178]
Reinforcement Learning (RL) has gained substantial attention across diverse application domains and theoretical investigations.<n>We consider a scenario where the decision-maker seeks to optimize a general utility function of the cumulative reward in the framework of a decision process (MDP)<n>We propose a modified value iteration algorithm that employs an epsilon-covering over the space of cumulative reward.<n>In the absence of a simulator, our algorithm, designed with an upper-confidence-bound exploration approach, identifies a near-optimal policy.
arXiv Detail & Related papers (2023-11-22T18:50:06Z) - Multivariate Systemic Risk Measures and Computation by Deep Learning
Algorithms [63.03966552670014]
We discuss the key related theoretical aspects, with a particular focus on the fairness properties of primal optima and associated risk allocations.
The algorithms we provide allow for learning primals, optima for the dual representation and corresponding fair risk allocations.
arXiv Detail & Related papers (2023-02-02T22:16:49Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
In this paper, we develop a simple yet efficient approach for the problem of comparing uncertain quantities.
We recast inner optimization in the Lagrangian as a learning problem for surrogate approximation, which bypasses apparent intractability.
The proposed light-SD demonstrates superior performance on several representative problems ranging from finance to supply chain management.
arXiv Detail & Related papers (2022-11-14T21:54:31Z) - Instance-Dependent Confidence and Early Stopping for Reinforcement
Learning [99.57168572237421]
Various algorithms for reinforcement learning (RL) exhibit dramatic variation in their convergence rates as a function of problem structure.
This research provides guarantees that explain textitex post the performance differences observed.
A natural next step is to convert these theoretical guarantees into guidelines that are useful in practice.
arXiv Detail & Related papers (2022-01-21T04:25:35Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z) - Cautious Reinforcement Learning via Distributional Risk in the Dual
Domain [45.17200683056563]
We study the estimation of risk-sensitive policies in reinforcement learning problems defined by a Markov Decision Process (MDPs) whose state and action spaces are countably finite.
We propose a new definition of risk, which we call caution, as a penalty function added to the dual objective of the linear programming (LP) formulation of reinforcement learning.
arXiv Detail & Related papers (2020-02-27T23:18:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.