ZeroSearch: Incentivize the Search Capability of LLMs without Searching
- URL: http://arxiv.org/abs/2505.04588v2
- Date: Fri, 16 May 2025 13:53:00 GMT
- Title: ZeroSearch: Incentivize the Search Capability of LLMs without Searching
- Authors: Hao Sun, Zile Qiao, Jiayan Guo, Xuanbo Fan, Yingyan Hou, Yong Jiang, Pengjun Xie, Yan Zhang, Fei Huang, Jingren Zhou,
- Abstract summary: We introduce ZeroSearch, a framework that incentivizes the capabilities of large language models to use a real search engine with simulated searches during training.<n>Our approach begins with lightweight supervised fine-tuning to transform the LLM into a retrieval module capable of generating both useful and noisy documents.
- Score: 69.55482019211597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective information searching is essential for enhancing the reasoning and generation capabilities of large language models (LLMs). Recent research has explored using reinforcement learning (RL) to improve LLMs' search capabilities by interacting with live search engines in real-world environments. While these approaches show promising results, they face two major challenges: (1) Uncontrolled Document Quality: The quality of documents returned by search engines is often unpredictable, introducing noise and instability into the training process. (2) Prohibitively High API Costs: RL training requires frequent rollouts, potentially involving hundreds of thousands of search requests, which incur substantial API expenses and severely constrain scalability. To address these challenges, we introduce ZeroSearch, a novel RL framework that incentivizes the capabilities of LLMs to use a real search engine with simulated searches during training. Our approach begins with lightweight supervised fine-tuning to transform the LLM into a retrieval module capable of generating both useful and noisy documents in response to a query. During RL training, we employ a curriculum-based rollout strategy that incrementally degrades the quality of generated documents, progressively eliciting the model's reasoning ability by exposing it to increasingly challenging retrieval scenarios. Extensive experiments demonstrate that ZeroSearch effectively incentivizes the search capabilities of LLMs using a 3B LLM as the retrieval module. Remarkably, a 7B retrieval module achieves comparable performance to the real search engine, while a 14B retrieval module even surpasses it. Furthermore, it generalizes well across both base and instruction-tuned models of various parameter sizes and is compatible with a wide range of RL algorithms.
Related papers
- MMSearch-R1: Incentivizing LMMs to Search [49.889749277236376]
We present MMSearch-R1, the first end-to-end reinforcement learning framework that enables on-demand, multi-turn search in real-world Internet environments.<n>Our framework integrates both image and text search tools, allowing the model to reason about when and how to invoke them guided by an outcome-based reward with a search penalty.
arXiv Detail & Related papers (2025-06-25T17:59:42Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - SEM: Reinforcement Learning for Search-Efficient Large Language Models [26.075903427834838]
Large Language Models (LLMs) have demonstrated their capabilities not only in reasoning but also in invoking external tools.<n>Existing reinforcement learning approaches often lead to redundant search behaviors, resulting in inefficiencies and over-cost.<n>We propose SEM, a novel post-training reinforcement learning framework that explicitly trains LLMs to optimize search usage.
arXiv Detail & Related papers (2025-05-12T09:45:40Z) - ReSearch: Learning to Reason with Search for LLMs via Reinforcement Learning [37.183397387416065]
We propose ReSearch, a framework that trains LLMs to Reason with Search via reinforcement learning.<n>Our approach treats search operations as integral components of the reasoning chain, where when and how to perform searches is guided by text-based thinking.<n>Analysis reveals that ReSearch naturally elicits advanced reasoning capabilities such as reflection and self-correction.
arXiv Detail & Related papers (2025-03-25T09:00:58Z) - Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning [50.419872452397684]
Search-R1 is an extension of reinforcement learning for reasoning frameworks.<n>It generates search queries during step-by-step reasoning with real-time retrieval.<n>It improves performance by 41% (Qwen2.5-7B) and 20% (Qwen2.5-3B) over various RAG baselines.
arXiv Detail & Related papers (2025-03-12T16:26:39Z) - R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning [87.30285670315334]
textbfR1-Searcher is a novel two-stage outcome-based RL approach designed to enhance the search capabilities of Large Language Models.<n>Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start.<n>Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
arXiv Detail & Related papers (2025-03-07T17:14:44Z) - When Search Engine Services meet Large Language Models: Visions and Challenges [53.32948540004658]
This paper conducts an in-depth examination of how integrating Large Language Models with search engines can mutually benefit both technologies.
We focus on two main areas: using search engines to improve LLMs (Search4LLM) and enhancing search engine functions using LLMs (LLM4Search)
arXiv Detail & Related papers (2024-06-28T03:52:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.