AI and Vision based Autonomous Navigation of Nano-Drones in Partially-Known Environments
- URL: http://arxiv.org/abs/2505.04972v1
- Date: Thu, 08 May 2025 06:16:36 GMT
- Title: AI and Vision based Autonomous Navigation of Nano-Drones in Partially-Known Environments
- Authors: Mattia Sartori, Chetna Singhal, Neelabhro Roy, Davide Brunelli, James Gross,
- Abstract summary: This work focuses on enabling the safe and autonomous flight of a pocket-size, 30-gram platform called Crazyflie 2.1.<n>We propose a novel AI-aided, vision-based reactive planning method for obstacle avoidance under the ambit of Integrated Sensing, Computing and Communication paradigm.<n>We show the ability to command the drone at $sim8$ frames-per-second and a model performance reaching a COCO mean-average-precision of $60.8$.
- Score: 8.595976385391896
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The miniaturisation of sensors and processors, the advancements in connected edge intelligence, and the exponential interest in Artificial Intelligence are boosting the affirmation of autonomous nano-size drones in the Internet of Robotic Things ecosystem. However, achieving safe autonomous navigation and high-level tasks such as exploration and surveillance with these tiny platforms is extremely challenging due to their limited resources. This work focuses on enabling the safe and autonomous flight of a pocket-size, 30-gram platform called Crazyflie 2.1 in a partially known environment. We propose a novel AI-aided, vision-based reactive planning method for obstacle avoidance under the ambit of Integrated Sensing, Computing and Communication paradigm. We deal with the constraints of the nano-drone by splitting the navigation task into two parts: a deep learning-based object detector runs on the edge (external hardware) while the planning algorithm is executed onboard. The results show the ability to command the drone at $\sim8$ frames-per-second and a model performance reaching a COCO mean-average-precision of $60.8$. Field experiments demonstrate the feasibility of the solution with the drone flying at a top speed of $1$ m/s while steering away from an obstacle placed in an unknown position and reaching the target destination. The outcome highlights the compatibility of the communication delay and the model performance with the requirements of the real-time navigation task. We provide a feasible alternative to a fully onboard implementation that can be extended to autonomous exploration with nano-drones.
Related papers
- Tiny-PULP-Dronets: Squeezing Neural Networks for Faster and Lighter Inference on Multi-Tasking Autonomous Nano-Drones [12.96119439129453]
This work moves from PULP-Dronet, a State-of-the-Art convolutional neural network for autonomous navigation on nano-drones, to Tiny-PULP-Dronet, a novel methodology to squeeze by more than one order of magnitude model size.
This massive reduction paves the way towards affordable multi-tasking on nano-drones, a fundamental requirement for achieving high-level intelligence.
arXiv Detail & Related papers (2024-07-02T16:24:57Z) - High-throughput Visual Nano-drone to Nano-drone Relative Localization using Onboard Fully Convolutional Networks [51.23613834703353]
Relative drone-to-drone localization is a fundamental building block for any swarm operations.
We present a vertically integrated system based on a novel vision-based fully convolutional neural network (FCNN)
Our model results in an R-squared improvement from 32 to 47% on the horizontal image coordinate and from 18 to 55% on the vertical image coordinate, on a real-world dataset of 30k images.
arXiv Detail & Related papers (2024-02-21T12:34:31Z) - A3D: Adaptive, Accurate, and Autonomous Navigation for Edge-Assisted
Drones [12.439787085435661]
We propose A3D, an edge server assisted drone navigation framework.
A3D can reduce end-to-end latency by 28.06% and extend the flight distance by up to 27.28% compared with non-adaptive solutions.
arXiv Detail & Related papers (2023-07-19T10:23:28Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments.
We propose ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments.
ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets.
arXiv Detail & Related papers (2023-04-06T13:07:17Z) - Learning Deep Sensorimotor Policies for Vision-based Autonomous Drone
Racing [52.50284630866713]
Existing systems often require hand-engineered components for state estimation, planning, and control.
This paper tackles the vision-based autonomous-drone-racing problem by learning deep sensorimotor policies.
arXiv Detail & Related papers (2022-10-26T19:03:17Z) - TransVisDrone: Spatio-Temporal Transformer for Vision-based
Drone-to-Drone Detection in Aerial Videos [57.92385818430939]
Drone-to-drone detection using visual feed has crucial applications, such as detecting drone collisions, detecting drone attacks, or coordinating flight with other drones.
Existing methods are computationally costly, follow non-end-to-end optimization, and have complex multi-stage pipelines, making them less suitable for real-time deployment on edge devices.
We propose a simple yet effective framework, itTransVisDrone, that provides an end-to-end solution with higher computational efficiency.
arXiv Detail & Related papers (2022-10-16T03:05:13Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
A fully-autonomous aerial robot for high-speed object grasping has been proposed.
As an additional sub-task, our system is able to autonomously pierce balloons located in poles close to the surface.
Our approach has been validated in a challenging international competition and has shown outstanding results.
arXiv Detail & Related papers (2021-12-10T11:49:51Z) - Coupling Vision and Proprioception for Navigation of Legged Robots [65.59559699815512]
We exploit the complementary strengths of vision and proprioception to achieve point goal navigation in a legged robot.
We show superior performance compared to wheeled robot (LoCoBot) baselines.
We also show the real-world deployment of our system on a quadruped robot with onboard sensors and compute.
arXiv Detail & Related papers (2021-12-03T18:59:59Z) - Towards bio-inspired unsupervised representation learning for indoor
aerial navigation [4.26712082692017]
This research displays a biologically inspired deep-learning algorithm for simultaneous localization and mapping (SLAM) and its application in a drone navigation system.
We propose an unsupervised representation learning method that yields low-dimensional latent state descriptors, that mitigates the sensitivity to perceptual aliasing, and works on power-efficient, embedded hardware.
The designed algorithm is evaluated on a dataset collected in an indoor warehouse environment, and initial results show the feasibility for robust indoor aerial navigation.
arXiv Detail & Related papers (2021-06-17T08:42:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.