Research on Anomaly Detection Methods Based on Diffusion Models
- URL: http://arxiv.org/abs/2505.05137v1
- Date: Thu, 08 May 2025 11:19:08 GMT
- Title: Research on Anomaly Detection Methods Based on Diffusion Models
- Authors: Yi Chen,
- Abstract summary: Anomaly detection is a fundamental task in machine learning and data mining, with significant applications in cybersecurity, industrial fault diagnosis, and clinical disease monitoring.<n>Traditional methods, such as statistical modeling and machine learning-based approaches, often face challenges in handling complex, high-dimensional data distributions.<n>We propose a novel framework that leverages the strengths of diffusion probabilistic models (DPMs) to effectively identify anomalies in both image and audio data.
- Score: 4.979627412142658
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection is a fundamental task in machine learning and data mining, with significant applications in cybersecurity, industrial fault diagnosis, and clinical disease monitoring. Traditional methods, such as statistical modeling and machine learning-based approaches, often face challenges in handling complex, high-dimensional data distributions. In this study, we explore the potential of diffusion models for anomaly detection, proposing a novel framework that leverages the strengths of diffusion probabilistic models (DPMs) to effectively identify anomalies in both image and audio data. The proposed method models the distribution of normal data through a diffusion process and reconstructs input data via reverse diffusion, using a combination of reconstruction errors and semantic discrepancies as anomaly indicators. To enhance the framework's performance, we introduce multi-scale feature extraction, attention mechanisms, and wavelet-domain representations, enabling the model to capture fine-grained structures and global dependencies in the data. Extensive experiments on benchmark datasets, including MVTec AD and UrbanSound8K, demonstrate that our method outperforms state-of-the-art anomaly detection techniques, achieving superior accuracy and robustness across diverse data modalities. This research highlights the effectiveness of diffusion models in anomaly detection and provides a robust and efficient solution for real-world applications.
Related papers
- Zero-Shot Image Anomaly Detection Using Generative Foundation Models [2.241618130319058]
This research explores the use of score-based generative models as foundational tools for semantic anomaly detection.<n>By analyzing Stein score errors, we introduce a novel method for identifying anomalous samples without requiring re-training on each target dataset.<n>Our approach improves over state-of-the-art and relies on training a single model on one dataset -- CelebA -- which we find to be an effective base distribution.
arXiv Detail & Related papers (2025-07-30T13:56:36Z) - CLIP Meets Diffusion: A Synergistic Approach to Anomaly Detection [54.85000884785013]
Anomaly detection is a complex problem due to the ambiguity in defining anomalies, the diversity of anomaly types, and the scarcity of training data.<n>We propose CLIPfusion, a method that leverages both discriminative and generative foundation models.<n>We believe that our method underscores the effectiveness of multi-modal and multi-model fusion in tackling the multifaceted challenges of anomaly detection.
arXiv Detail & Related papers (2025-06-13T13:30:15Z) - Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - Anomaly detection using Diffusion-based methods [15.049468347670421]
This paper explores the utility of diffusion-based models for anomaly detection.<n>It focuses on their efficacy in identifying deviations in both compact and high-resolution datasets.
arXiv Detail & Related papers (2024-12-10T14:17:23Z) - Back to Bayesics: Uncovering Human Mobility Distributions and Anomalies with an Integrated Statistical and Neural Framework [14.899157568336731]
DeepBayesic is a novel framework that integrates Bayesian principles with deep neural networks to model the underlying distributions.
We evaluate our approach on several mobility datasets, demonstrating significant improvements over state-of-the-art anomaly detection methods.
arXiv Detail & Related papers (2024-10-01T19:02:06Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - ImDiffusion: Imputed Diffusion Models for Multivariate Time Series
Anomaly Detection [44.21198064126152]
We propose a novel anomaly detection framework named ImDiffusion.
ImDiffusion combines time series imputation and diffusion models to achieve accurate and robust anomaly detection.
We evaluate the performance of ImDiffusion via extensive experiments on benchmark datasets.
arXiv Detail & Related papers (2023-07-03T04:57:40Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.