From Sleep Staging to Spindle Detection: Evaluating End-to-End Automated Sleep Analysis
- URL: http://arxiv.org/abs/2505.05371v1
- Date: Thu, 08 May 2025 16:07:10 GMT
- Title: From Sleep Staging to Spindle Detection: Evaluating End-to-End Automated Sleep Analysis
- Authors: Niklas Grieger, Siamak Mehrkanoon, Philipp Ritter, Stephan Bialonski,
- Abstract summary: We evaluate whether a fully automated analysis can replicate findings from an expert-based study of bipolar disorder.<n>The results demonstrate that fully automated approaches have the potential to facilitate large-scale sleep research.
- Score: 1.3374504717801061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automation of sleep analysis, including both macrostructural (sleep stages) and microstructural (e.g., sleep spindles) elements, promises to enable large-scale sleep studies and to reduce variance due to inter-rater incongruencies. While individual steps, such as sleep staging and spindle detection, have been studied separately, the feasibility of automating multi-step sleep analysis remains unclear. Here, we evaluate whether a fully automated analysis using state-of-the-art machine learning models for sleep staging (RobustSleepNet) and subsequent spindle detection (SUMOv2) can replicate findings from an expert-based study of bipolar disorder. The automated analysis qualitatively reproduced key findings from the expert-based study, including significant differences in fast spindle densities between bipolar patients and healthy controls, accomplishing in minutes what previously took months to complete manually. While the results of the automated analysis differed quantitatively from the expert-based study, possibly due to biases between expert raters or between raters and the models, the models individually performed at or above inter-rater agreement for both sleep staging and spindle detection. Our results demonstrate that fully automated approaches have the potential to facilitate large-scale sleep research. We are providing public access to the tools used in our automated analysis by sharing our code and introducing SomnoBot, a privacy-preserving sleep analysis platform.
Related papers
- aSAGA: Automatic Sleep Analysis with Gray Areas [2.47298967960367]
State-of-the-art automatic sleep staging methods have already demonstrated comparable reliability and superior time efficiency to manual sleep staging.
We propose a human-in-the-loop concept for sleep analysis, presenting an automatic sleep staging model (aSAGA) that performs effectively with both clinical polysomnographic recordings and home sleep studies.
arXiv Detail & Related papers (2023-10-03T13:17:38Z) - CoRe-Sleep: A Multimodal Fusion Framework for Time Series Robust to
Imperfect Modalities [10.347153539399836]
CoRe-Sleep is a Coordinated Representation multimodal fusion network.
We show how appropriately handling multimodal information can be the key to achieving such robustness.
This work aims at bridging the gap between automated analysis tools and their clinical utility.
arXiv Detail & Related papers (2023-03-27T18:28:58Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
Sleep Activity Recognition methods can provide indicators to assess, monitor, and characterize subjects' sleep-wake cycles and detect behavioral changes.
We propose a general method that continuously operates on passively sensed data from smartphones to characterize sleep and identify significant sleep episodes.
Thanks to their ubiquity, these devices constitute an excellent alternative data source to profile subjects' biorhythms in a continuous, objective, and non-invasive manner.
arXiv Detail & Related papers (2023-01-17T15:18:45Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
Psychiatric patients' passive activity monitoring is crucial to detect behavioural shifts in real-time.
Sleep Activity Recognition constitutes a behavioural marker to portray patients' activity cycles.
Mobile passively sensed data captured from smartphones constitute an excellent alternative to profile patients' biorhythm.
arXiv Detail & Related papers (2022-11-08T17:29:40Z) - SleePyCo: Automatic Sleep Scoring with Feature Pyramid and Contrastive
Learning [0.0]
We propose a deep learning framework named SleePyCo that incorporates 1) a feature pyramid and 2) supervised contrastive learning for automatic sleep scoring.
For the feature pyramid, we propose a backbone network named SleePyCo-backbone to consider multiple feature sequences on different temporal and frequency scales.
Supervised contrastive learning allows the network to extract class discriminative features by minimizing the distance between intra-class features and simultaneously maximizing that between inter-class features.
arXiv Detail & Related papers (2022-09-20T04:10:49Z) - Identity and Posture Recognition in Smart Beds with Deep Multitask
Learning [8.422257363944295]
We propose a robust deep learning model capable of accurately detecting subjects and their sleeping postures.
A combination of loss functions is used to discriminate subjects and their sleeping postures simultaneously.
The proposed algorithm can ultimately be used in clinical and smart home environments.
arXiv Detail & Related papers (2021-04-05T21:21:54Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z) - RobustSleepNet: Transfer learning for automated sleep staging at scale [0.0]
Sleep disorder diagnosis relies on the analysis of polysomnography (PSG) records.
In practice, sleep stage classification relies on the visual inspection of 30-seconds epochs of polysomnography signals.
We introduce RobustSleepNet, a deep learning model for automatic sleep stage classification able to handle arbitrary PSG montages.
arXiv Detail & Related papers (2021-01-07T09:39:08Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs)
maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance.
MSEs are mostly not considered in the absence of established scoring criteria defining MSEs.
We aimed for automatic detection of MSEs with machine learning based on raw EEG and EOG data as input.
arXiv Detail & Related papers (2020-09-07T11:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.