Pretraining a Shared Q-Network for Data-Efficient Offline Reinforcement Learning
- URL: http://arxiv.org/abs/2505.05701v1
- Date: Fri, 09 May 2025 00:26:01 GMT
- Title: Pretraining a Shared Q-Network for Data-Efficient Offline Reinforcement Learning
- Authors: Jongchan Park, Mingyu Park, Donghwan Lee,
- Abstract summary: offline reinforcement learning (RL) aims to learn a policy from a static dataset without further interactions with the environment.<n>We propose a plug-and-play pretraining method to initialize a feature of a $Q$-network to enhance data efficiency in offline RL.<n>We show that our method significantly boosts data-efficient offline RL across various data qualities and data distributions trough D4RL and ExoRL benchmarks.
- Score: 9.988205328630947
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Offline reinforcement learning (RL) aims to learn a policy from a static dataset without further interactions with the environment. Collecting sufficiently large datasets for offline RL is exhausting since this data collection requires colossus interactions with environments and becomes tricky when the interaction with the environment is restricted. Hence, how an agent learns the best policy with a minimal static dataset is a crucial issue in offline RL, similar to the sample efficiency problem in online RL. In this paper, we propose a simple yet effective plug-and-play pretraining method to initialize a feature of a $Q$-network to enhance data efficiency in offline RL. Specifically, we introduce a shared $Q$-network structure that outputs predictions of the next state and $Q$-value. We pretrain the shared $Q$-network through a supervised regression task that predicts a next state and trains the shared $Q$-network using diverse offline RL methods. Through extensive experiments, we empirically demonstrate that our method enhances the performance of existing popular offline RL methods on the D4RL, Robomimic and V-D4RL benchmarks. Furthermore, we show that our method significantly boosts data-efficient offline RL across various data qualities and data distributions trough D4RL and ExoRL benchmarks. Notably, our method adapted with only 10% of the dataset outperforms standard algorithms even with full datasets.
Related papers
- MOORL: A Framework for Integrating Offline-Online Reinforcement Learning [6.7265073544042995]
We propose Meta Offline-Online Reinforcement Learning (MOORL), a hybrid framework that unifies offline and online learning.<n>Our theoretical analysis demonstrates that the hybrid approach enhances exploration by effectively combining the complementary strengths of offline and online data.<n>With minimal computational overhead, MOORL achieves strong performance, underscoring its potential for practical applications in real-world scenarios.
arXiv Detail & Related papers (2025-06-11T10:12:50Z) - Efficient Online Reinforcement Learning Fine-Tuning Need Not Retain Offline Data [64.74333980417235]
We show that retaining offline data is unnecessary as long as we use a properly-designed online RL approach for fine-tuning offline RL.<n>We show that Warm-start RL (WSRL) is able to fine-tune without retaining any offline data, and is able to learn faster and attains higher performance than existing algorithms.
arXiv Detail & Related papers (2024-12-10T18:57:12Z) - D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments.
Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation.
arXiv Detail & Related papers (2024-08-15T22:27:00Z) - Beyond Uniform Sampling: Offline Reinforcement Learning with Imbalanced
Datasets [53.8218145723718]
offline policy learning is aimed at learning decision-making policies using existing datasets of trajectories without collecting additional data.
We argue that when a dataset is dominated by suboptimal trajectories, state-of-the-art offline RL algorithms do not substantially improve over the average return of trajectories in the dataset.
We present a realization of the sampling strategy and an algorithm that can be used as a plug-and-play module in standard offline RL algorithms.
arXiv Detail & Related papers (2023-10-06T17:58:14Z) - Look Beneath the Surface: Exploiting Fundamental Symmetry for
Sample-Efficient Offline RL [29.885978495034703]
offline reinforcement learning (RL) offers an appealing approach to real-world tasks by learning policies from pre-collected datasets.
However, the performance of existing offline RL algorithms heavily depends on the scale and state-action space coverage of datasets.
We provide a new insight that leveraging the fundamental symmetry of system dynamics can substantially enhance offline RL performance under small datasets.
arXiv Detail & Related papers (2023-06-07T07:51:05Z) - Reward-agnostic Fine-tuning: Provable Statistical Benefits of Hybrid
Reinforcement Learning [66.43003402281659]
A central question boils down to how to efficiently utilize online data collection to strengthen and complement the offline dataset.
We design a three-stage hybrid RL algorithm that beats the best of both worlds -- pure offline RL and pure online RL.
The proposed algorithm does not require any reward information during data collection.
arXiv Detail & Related papers (2023-05-17T15:17:23Z) - Conservative Data Sharing for Multi-Task Offline Reinforcement Learning [119.85598717477016]
We argue that a natural use case of offline RL is in settings where we can pool large amounts of data collected in various scenarios for solving different tasks.
We develop a simple technique for data-sharing in multi-task offline RL that routes data based on the improvement over the task-specific data.
arXiv Detail & Related papers (2021-09-16T17:34:06Z) - D4RL: Datasets for Deep Data-Driven Reinforcement Learning [119.49182500071288]
We introduce benchmarks specifically designed for the offline setting, guided by key properties of datasets relevant to real-world applications of offline RL.
By moving beyond simple benchmark tasks and data collected by partially-trained RL agents, we reveal important and unappreciated deficiencies of existing algorithms.
arXiv Detail & Related papers (2020-04-15T17:18:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.