New Statistical and Computational Results for Learning Junta Distributions
- URL: http://arxiv.org/abs/2505.05819v3
- Date: Sat, 12 Jul 2025 21:37:06 GMT
- Title: New Statistical and Computational Results for Learning Junta Distributions
- Authors: Lorenzo Beretta,
- Abstract summary: We show that learning $k$-junta distributions is emphcomputationally equivalent to learning $k$-parity functions with noise.<n>We design an algorithm for learning junta distributions whose statistical complexity is optimal.
- Score: 0.38073142980733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of learning junta distributions on $\{0, 1\}^n$, where a distribution is a $k$-junta if its probability mass function depends on a subset of at most $k$ variables. We make two main contributions: - We show that learning $k$-junta distributions is \emph{computationally} equivalent to learning $k$-parity functions with noise (LPN), a landmark problem in computational learning theory. - We design an algorithm for learning junta distributions whose statistical complexity is optimal, up to polylogarithmic factors. Computationally, our algorithm matches the complexity of previous (non-sample-optimal) algorithms. Combined, our two contributions imply that our algorithm cannot be significantly improved, statistically or computationally, barring a breakthrough for LPN.
Related papers
- Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
We show that any efficient SQ algorithm for the problem requires sample complexity at least $Omega(d1/2/(maxp, epsilon)2)$.
Our lower bound suggests that this quadratic dependence on $1/epsilon$ is inherent for efficient algorithms.
arXiv Detail & Related papers (2023-07-13T18:59:28Z) - Information-Computation Tradeoffs for Learning Margin Halfspaces with
Random Classification Noise [50.64137465792738]
We study the problem of PAC $gamma$-margin halfspaces with Random Classification Noise.
We establish an information-computation tradeoff suggesting an inherent gap between the sample complexity of the problem and the sample complexity of computationally efficient algorithms.
arXiv Detail & Related papers (2023-06-28T16:33:39Z) - Sample Complexity Bounds for Robustly Learning Decision Lists against
Evasion Attacks [25.832511407411637]
A fundamental problem in adversarial machine learning is to quantify how much training data is needed in the presence of evasion attacks.
We work with probability distributions on the input data that satisfy a Lipschitz condition: nearby points have similar probability.
For every fixed $k$ the class of $k$-decision lists has sample complexity against a $log(n)$-bounded adversary.
arXiv Detail & Related papers (2022-05-12T14:40:18Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
We study the fundamental task of list-decodable mean estimation in high dimensions.
Our algorithm runs in time $widetildeO(ndk)$ for all $k = O(sqrtd) cup Omega(d)$, where $n$ is the size of the dataset.
A variant of our algorithm has runtime $widetildeO(ndk)$ for all $k$, at the expense of an $O(sqrtlog k)$ factor in the recovery guarantee
arXiv Detail & Related papers (2020-11-19T17:21:37Z) - The Complexity of Adversarially Robust Proper Learning of Halfspaces
with Agnostic Noise [67.27523616312428]
We study the computational complexity of adversarially robust proper learning of halfspaces in the distribution-independent PAC model.
We give a computationally efficient learning algorithm and a nearly matching computational hardness result for this problem.
arXiv Detail & Related papers (2020-07-30T04:18:51Z) - Robustly Learning any Clusterable Mixture of Gaussians [55.41573600814391]
We study the efficient learnability of high-dimensional Gaussian mixtures in the adversarial-robust setting.
We provide an algorithm that learns the components of an $epsilon$-corrupted $k$-mixture within information theoretically near-optimal error proofs of $tildeO(epsilon)$.
Our main technical contribution is a new robust identifiability proof clusters from a Gaussian mixture, which can be captured by the constant-degree Sum of Squares proof system.
arXiv Detail & Related papers (2020-05-13T16:44:12Z) - Learning Sparse Classifiers: Continuous and Mixed Integer Optimization
Perspectives [10.291482850329892]
Mixed integer programming (MIP) can be used to solve (to optimality) $ell_0$-regularized regression problems.
We propose two classes of scalable algorithms: an exact algorithm that can handlepapprox 50,000$ features in a few minutes, and approximate algorithms that can address instances with $papprox6$.
In addition, we present new estimation error bounds for $ell$-regularizeds.
arXiv Detail & Related papers (2020-01-17T18:47:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.