Multi-Modal Molecular Representation Learning via Structure Awareness
- URL: http://arxiv.org/abs/2505.05877v2
- Date: Mon, 12 May 2025 01:15:32 GMT
- Title: Multi-Modal Molecular Representation Learning via Structure Awareness
- Authors: Rong Yin, Ruyue Liu, Xiaoshuai Hao, Xingrui Zhou, Yong Liu, Can Ma, Weiping Wang,
- Abstract summary: We propose a structure-awareness-based multi-modal self-supervised molecular representation pre-training framework (MMSA)<n>MMSA enhances molecular graph representations by leveraging invariant knowledge between molecules.<n>It achieves state-of-the-art performance on the MoleculeNet benchmark, with average ROC-AUC improvements ranging from 1.8% to 9.6% over baseline methods.
- Score: 19.813872931221546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate extraction of molecular representations is a critical step in the drug discovery process. In recent years, significant progress has been made in molecular representation learning methods, among which multi-modal molecular representation methods based on images, and 2D/3D topologies have become increasingly mainstream. However, existing these multi-modal approaches often directly fuse information from different modalities, overlooking the potential of intermodal interactions and failing to adequately capture the complex higher-order relationships and invariant features between molecules. To overcome these challenges, we propose a structure-awareness-based multi-modal self-supervised molecular representation pre-training framework (MMSA) designed to enhance molecular graph representations by leveraging invariant knowledge between molecules. The framework consists of two main modules: the multi-modal molecular representation learning module and the structure-awareness module. The multi-modal molecular representation learning module collaboratively processes information from different modalities of the same molecule to overcome intermodal differences and generate a unified molecular embedding. Subsequently, the structure-awareness module enhances the molecular representation by constructing a hypergraph structure to model higher-order correlations between molecules. This module also introduces a memory mechanism for storing typical molecular representations, aligning them with memory anchors in the memory bank to integrate invariant knowledge, thereby improving the model generalization ability. Extensive experiments have demonstrated the effectiveness of MMSA, which achieves state-of-the-art performance on the MoleculeNet benchmark, with average ROC-AUC improvements ranging from 1.8% to 9.6% over baseline methods.
Related papers
- Mol-LLaMA: Towards General Understanding of Molecules in Large Molecular Language Model [55.87790704067848]
Mol-LLaMA is a large molecular language model that grasps the general knowledge centered on molecules.<n>To improve molecular understanding, we propose a module that integrates complementary information from different molecular encoders.
arXiv Detail & Related papers (2025-02-19T05:49:10Z) - Knowledge-aware contrastive heterogeneous molecular graph learning [77.94721384862699]
We propose a paradigm shift by encoding molecular graphs into Heterogeneous Molecular Graph Learning (KCHML)<n>KCHML conceptualizes molecules through three distinct graph views-molecular, elemental, and pharmacological-enhanced by heterogeneous molecular graphs and a dual message-passing mechanism.<n>This design offers a comprehensive representation for property prediction, as well as for downstream tasks such as drug-drug interaction (DDI) prediction.
arXiv Detail & Related papers (2025-02-17T11:53:58Z) - FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
We introduce Functional Group-Aware Representations for Small Molecules (FARM)
FARM is a foundation model designed to bridge the gap between SMILES, natural language, and molecular graphs.
We rigorously evaluate FARM on the MoleculeNet dataset, where it achieves state-of-the-art performance on 10 out of 12 tasks.
arXiv Detail & Related papers (2024-10-02T23:04:58Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
We introduce Hierarchical textual Inversion for Molecular generation (HI-Mol), a novel data-efficient molecular generation method.
HI-Mol is inspired by the importance of hierarchical information, e.g., both coarse- and fine-grained features, in understanding the molecule distribution.
Compared to the conventional textual inversion method in the image domain using a single-level token embedding, our multi-level token embeddings allow the model to effectively learn the underlying low-shot molecule distribution.
arXiv Detail & Related papers (2024-05-05T08:35:23Z) - MolTC: Towards Molecular Relational Modeling In Language Models [28.960416816491392]
We propose a novel framework for Molecular inTeraction prediction following Chain-of-Thought (CoT) theory termed MolTC.
Our experiments, conducted across various datasets involving over 4,000,000 molecular pairs, exhibit the superiority of our method over current GNN and LLM-based baselines.
arXiv Detail & Related papers (2024-02-06T07:51:56Z) - Integrating Chemical Language and Molecular Graph in Multimodal Fused Deep Learning for Drug Property Prediction [9.388979080270103]
We construct multimodal deep learning models to cover different molecular representations.
Compared with mono-modal models, our multimodal fused deep learning (MMFDL) models outperform single models in accuracy, reliability, and resistance capability against noise.
arXiv Detail & Related papers (2023-12-29T07:19:42Z) - MolFM: A Multimodal Molecular Foundation Model [9.934141536012596]
MolFM is a multimodal molecular foundation model designed to facilitate joint representation learning from molecular structures, biomedical texts, and knowledge graphs.
We provide theoretical analysis that our cross-modal pre-training captures local and global molecular knowledge by minimizing the distance in the feature space between different modalities of the same molecule.
On cross-modal retrieval, MolFM outperforms existing models with 12.13% and 5.04% absolute gains under the zero-shot and fine-tuning settings, respectively.
arXiv Detail & Related papers (2023-06-06T12:45:15Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
We introduce GODE, which accounts for the dual-level structure inherent in molecules.<n> Molecules possess an intrinsic graph structure and simultaneously function as nodes within a broader molecular knowledge graph.<n>By pre-training two GNNs on different graph structures, GODE effectively fuses molecular structures with their corresponding knowledge graph substructures.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Learning Harmonic Molecular Representations on Riemannian Manifold [18.49126496517951]
Molecular representation learning plays a crucial role in AI-assisted drug discovery research.
We propose a Harmonic Molecular Representation learning framework, which represents a molecule using the Laplace-Beltrami eigenfunctions of its molecular surface.
arXiv Detail & Related papers (2023-03-27T18:02:47Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
We study how to generate molecule conformations (textiti.e., 3D structures) from a molecular graph.
We propose a novel probabilistic framework to generate valid and diverse conformations given a molecular graph.
arXiv Detail & Related papers (2021-02-20T03:17:58Z) - Molecular CT: Unifying Geometry and Representation Learning for
Molecules at Different Scales [3.987395340580183]
A new deep neural network architecture, Molecular Configuration Transformer ( Molecular CT), is introduced for this purpose.
The computational efficiency and universality make Molecular CT versatile for a variety of molecular learning scenarios.
As examples, we show that Molecular CT enables representational learning for molecular systems at different scales, and achieves comparable or improved results on common benchmarks.
arXiv Detail & Related papers (2020-12-22T03:41:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.