Safe-EF: Error Feedback for Nonsmooth Constrained Optimization
- URL: http://arxiv.org/abs/2505.06053v1
- Date: Fri, 09 May 2025 13:49:05 GMT
- Title: Safe-EF: Error Feedback for Nonsmooth Constrained Optimization
- Authors: Rustem Islamov, Yarden As, Ilyas Fatkhullin,
- Abstract summary: Communication compression with contractive compressors (e.g., Top-K) is often preferable in practice but can degrade performance without proper handling.<n>Error feedback (EF) mitigates such issues but has been largely restricted for smooth, unconstrained problems.<n>We advance our understanding of EF in the canonical non-smooth convex setting by establishing new lower complexity bounds for first-order algorithms with contractive compression.<n>We propose Safe-EF, a novel algorithm that matches our lower bound up to a constant while enforcing safety constraints essential for practical applications.
- Score: 6.247092201631672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning faces severe communication bottlenecks due to the high dimensionality of model updates. Communication compression with contractive compressors (e.g., Top-K) is often preferable in practice but can degrade performance without proper handling. Error feedback (EF) mitigates such issues but has been largely restricted for smooth, unconstrained problems, limiting its real-world applicability where non-smooth objectives and safety constraints are critical. We advance our understanding of EF in the canonical non-smooth convex setting by establishing new lower complexity bounds for first-order algorithms with contractive compression. Next, we propose Safe-EF, a novel algorithm that matches our lower bound (up to a constant) while enforcing safety constraints essential for practical applications. Extending our approach to the stochastic setting, we bridge the gap between theory and practical implementation. Extensive experiments in a reinforcement learning setup, simulating distributed humanoid robot training, validate the effectiveness of Safe-EF in ensuring safety and reducing communication complexity.
Related papers
- Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
The recommender system (RSRS) addresses both user preference and privacy concerns.
We propose a novel method that incorporates non-uniform gradient descent to improve communication efficiency.
RFRecF's superior robustness compared to diverse baselines.
arXiv Detail & Related papers (2024-11-03T12:10:20Z) - One-Shot Safety Alignment for Large Language Models via Optimal Dualization [64.52223677468861]
This paper presents a perspective of dualization that reduces constrained alignment to an equivalent unconstrained alignment problem.
We do so by pre-optimizing a smooth and convex dual function that has a closed form.
Our strategy leads to two practical algorithms in model-based and preference-based settings.
arXiv Detail & Related papers (2024-05-29T22:12:52Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
This paper introduces an advanced approach for fortifying Federated Learning (FL) systems against label-flipping attacks.
We propose a consensus-based verification process integrated with an adaptive thresholding mechanism.
Our results indicate a significant mitigation of label-flipping attacks, bolstering the FL system's resilience.
arXiv Detail & Related papers (2024-03-05T20:54:56Z) - SCPO: Safe Reinforcement Learning with Safety Critic Policy Optimization [1.3597551064547502]
This study introduces a novel safe reinforcement learning algorithm, Safety Critic Policy Optimization.
In this study, we define the safety critic, a mechanism that nullifies rewards obtained through violating safety constraints.
Our theoretical analysis indicates that the proposed algorithm can automatically balance the trade-off between adhering to safety constraints and maximizing rewards.
arXiv Detail & Related papers (2023-11-01T22:12:50Z) - Constraint-Conditioned Policy Optimization for Versatile Safe Reinforcement Learning [33.988698754176646]
We introduce the Conditioned Constrained Policy Optimization (CCPO) framework, consisting of two key modules.
Our experiments demonstrate that CCPO outperforms the baselines in terms of safety and task performance.
This makes our approach suitable for real-world dynamic applications.
arXiv Detail & Related papers (2023-10-05T17:39:02Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
We propose a safe model-free RL algorithm with a novel multiplicative value function consisting of a safety critic and a reward critic.
The safety critic predicts the probability of constraint violation and discounts the reward critic that only estimates constraint-free returns.
We evaluate our method in four safety-focused environments, including classical RL benchmarks augmented with safety constraints and robot navigation tasks with images and raw Lidar scans as observations.
arXiv Detail & Related papers (2023-03-07T18:29:15Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
This paper revisits prior work in this scope from the perspective of state-wise safe RL.
We propose Unrolling Safety Layer (USL), a joint method that combines safety optimization and safety projection.
To facilitate further research in this area, we reproduce related algorithms in a unified pipeline and incorporate them into SafeRL-Kit.
arXiv Detail & Related papers (2022-12-12T06:30:17Z) - Log Barriers for Safe Black-box Optimization with Application to Safe
Reinforcement Learning [72.97229770329214]
We introduce a general approach for seeking high dimensional non-linear optimization problems in which maintaining safety during learning is crucial.
Our approach called LBSGD is based on applying a logarithmic barrier approximation with a carefully chosen step size.
We demonstrate the effectiveness of our approach on minimizing violation in policy tasks in safe reinforcement learning.
arXiv Detail & Related papers (2022-07-21T11:14:47Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.