On the Depth of Monotone ReLU Neural Networks and ICNNs
- URL: http://arxiv.org/abs/2505.06169v1
- Date: Fri, 09 May 2025 16:19:34 GMT
- Title: On the Depth of Monotone ReLU Neural Networks and ICNNs
- Authors: Egor Bakaev, Florestan Brunck, Christoph Hertrich, Daniel Reichman, Amir Yehudayoff,
- Abstract summary: We study two models of ReLU neural networks: monotone networks (ReLU$+$) and input convex neural networks (ICNN)<n>Our focus is on expressivity, mostly in terms of depth, and we prove the following lower bounds.
- Score: 6.809905390704206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study two models of ReLU neural networks: monotone networks (ReLU$^+$) and input convex neural networks (ICNN). Our focus is on expressivity, mostly in terms of depth, and we prove the following lower bounds. For the maximum function MAX$_n$ computing the maximum of $n$ real numbers, we show that ReLU$^+$ networks cannot compute MAX$_n$, or even approximate it. We prove a sharp $n$ lower bound on the ICNN depth complexity of MAX$_n$. We also prove depth separations between ReLU networks and ICNNs; for every $k$, there is a depth-2 ReLU network of size $O(k^2)$ that cannot be simulated by a depth-$k$ ICNN. The proofs are based on deep connections between neural networks and polyhedral geometry, and also use isoperimetric properties of triangulations.
Related papers
- Order Theory in the Context of Machine Learning [0.0]
IVNN refers to a network with integer weights but real biases.<n>For every poset with $n$ points, there exists a corresponding order polytope.<n>We show how posets with four points induce neural networks that can be interpreted as $2times 2$ convolutional filters.
arXiv Detail & Related papers (2024-12-08T22:57:41Z) - Deep Neural Networks: Multi-Classification and Universal Approximation [0.0]
We demonstrate that a ReLU deep neural network with a width of $2$ and a depth of $2N+4M-1$ layers can achieve finite sample memorization for any dataset comprising $N$ elements.
We also provide depth estimates for approximating $W1,p$ functions and width estimates for approximating $Lp(Omega;mathbbRm)$ for $mgeq1$.
arXiv Detail & Related papers (2024-09-10T14:31:21Z) - Bayesian Inference with Deep Weakly Nonlinear Networks [57.95116787699412]
We show at a physics level of rigor that Bayesian inference with a fully connected neural network is solvable.
We provide techniques to compute the model evidence and posterior to arbitrary order in $1/N$ and at arbitrary temperature.
arXiv Detail & Related papers (2024-05-26T17:08:04Z) - Sample Complexity of Neural Policy Mirror Descent for Policy
Optimization on Low-Dimensional Manifolds [75.51968172401394]
We study the sample complexity of the neural policy mirror descent (NPMD) algorithm with deep convolutional neural networks (CNN)
In each iteration of NPMD, both the value function and the policy can be well approximated by CNNs.
We show that NPMD can leverage the low-dimensional structure of state space to escape from the curse of dimensionality.
arXiv Detail & Related papers (2023-09-25T07:31:22Z) - Capacity Bounds for Hyperbolic Neural Network Representations of Latent
Tree Structures [8.28720658988688]
We study the representation capacity of deep hyperbolic neural networks (HNNs) with a ReLU activation function.
We establish the first proof that HNNs can embed any finite weighted tree into a hyperbolic space of dimensiond$ at least equal to $2$.
We find that the network complexity of HNN implementing the graph representation is independent of the representation fidelity/distortion.
arXiv Detail & Related papers (2023-08-18T02:24:32Z) - Rates of Approximation by ReLU Shallow Neural Networks [8.22379888383833]
We show that ReLU shallow neural networks with $m$ hidden neurons can uniformly approximate functions from the H"older space.
Such rates are very close to the optimal one $O(m-fracrd)$ in the sense that $fracd+2d+4d+4$ is close to $1$, when the dimension $d$ is large.
arXiv Detail & Related papers (2023-07-24T00:16:50Z) - On Expressivity of Height in Neural Networks [29.49793694185358]
We call a neural network characterized by width, depth, and height a 3D network.<n>We show via bound estimation and explicit construction that given the same number of neurons and parameters, a 3D ReLU network of width $W$, depth $K$, and height $H$ has greater expressive power than a 2D network of width $Htimes W$ and depth $K$.
arXiv Detail & Related papers (2023-05-11T11:54:36Z) - Generalization Ability of Wide Neural Networks on $\mathbb{R}$ [8.508360765158326]
We study the generalization ability of the wide two-layer ReLU neural network on $mathbbR$.
We show that: $i)$ when the width $mrightarrowinfty$, the neural network kernel (NNK) uniformly converges to the NTK; $ii)$ the minimax rate of regression over the RKHS associated to $K_1$ is $n-2/3$; $iii)$ if one adopts the early stopping strategy in training a wide neural network, the resulting neural network achieves the minimax rate; $iv
arXiv Detail & Related papers (2023-02-12T15:07:27Z) - Understanding Deep Neural Function Approximation in Reinforcement
Learning via $\epsilon$-Greedy Exploration [53.90873926758026]
This paper provides a theoretical study of deep neural function approximation in reinforcement learning (RL)
We focus on the value based algorithm with the $epsilon$-greedy exploration via deep (and two-layer) neural networks endowed by Besov (and Barron) function spaces.
Our analysis reformulates the temporal difference error in an $L2(mathrmdmu)$-integrable space over a certain averaged measure $mu$, and transforms it to a generalization problem under the non-iid setting.
arXiv Detail & Related papers (2022-09-15T15:42:47Z) - A simple geometric proof for the benefit of depth in ReLU networks [57.815699322370826]
We present a simple proof for the benefit of depth in multi-layer feedforward network with rectified activation ("depth separation")
We present a concrete neural network with linear depth (in $m$) and small constant width ($leq 4$) that classifies the problem with zero error.
arXiv Detail & Related papers (2021-01-18T15:40:27Z) - Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK [58.5766737343951]
We consider the dynamic of descent for learning a two-layer neural network.
We show that an over-parametrized two-layer neural network can provably learn with gradient loss at most ground with Tangent samples.
arXiv Detail & Related papers (2020-07-09T07:09:28Z) - Towards Understanding Hierarchical Learning: Benefits of Neural
Representations [160.33479656108926]
In this work, we demonstrate that intermediate neural representations add more flexibility to neural networks.
We show that neural representation can achieve improved sample complexities compared with the raw input.
Our results characterize when neural representations are beneficial, and may provide a new perspective on why depth is important in deep learning.
arXiv Detail & Related papers (2020-06-24T02:44:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.