Neuro-Symbolic Concepts
- URL: http://arxiv.org/abs/2505.06191v1
- Date: Fri, 09 May 2025 17:02:51 GMT
- Title: Neuro-Symbolic Concepts
- Authors: Jiayuan Mao, Joshua B. Tenenbaum, Jiajun Wu,
- Abstract summary: This article presents a concept-centric paradigm for building agents that can learn continually and reason flexibly.<n>The concept-centric agent utilizes a vocabulary of neuro-symbolic concepts.<n>This framework offers several advantages, including data efficiency, compositional generalization, continual learning, and zero-shot transfer.
- Score: 72.94541757514396
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article presents a concept-centric paradigm for building agents that can learn continually and reason flexibly. The concept-centric agent utilizes a vocabulary of neuro-symbolic concepts. These concepts, such as object, relation, and action concepts, are grounded on sensory inputs and actuation outputs. They are also compositional, allowing for the creation of novel concepts through their structural combination. To facilitate learning and reasoning, the concepts are typed and represented using a combination of symbolic programs and neural network representations. Leveraging such neuro-symbolic concepts, the agent can efficiently learn and recombine them to solve various tasks across different domains, ranging from 2D images, videos, 3D scenes, and robotic manipulation tasks. This concept-centric framework offers several advantages, including data efficiency, compositional generalization, continual learning, and zero-shot transfer.
Related papers
- OmniPrism: Learning Disentangled Visual Concept for Image Generation [57.21097864811521]
Creative visual concept generation often draws inspiration from specific concepts in a reference image to produce relevant outcomes.<n>We propose OmniPrism, a visual concept disentangling approach for creative image generation.<n>Our method learns disentangled concept representations guided by natural language and trains a diffusion model to incorporate these concepts.
arXiv Detail & Related papers (2024-12-16T18:59:52Z) - LLM-assisted Concept Discovery: Automatically Identifying and Explaining Neuron Functions [15.381209058506078]
Prior works have associated concepts with neurons based on examples of concepts or a pre-defined set of concepts.
We propose to leverage multimodal large language models for automatic and open-ended concept discovery.
We validate each concept by generating examples and counterexamples and evaluating the neuron's response on this new set of images.
arXiv Detail & Related papers (2024-06-12T18:19:37Z) - From Neural Activations to Concepts: A Survey on Explaining Concepts in Neural Networks [15.837316393474403]
Concepts can act as a natural link between learning and reasoning.
Knowledge can not only be extracted from neural networks but concept knowledge can also be inserted into neural network architectures.
arXiv Detail & Related papers (2023-10-18T11:08:02Z) - ZeroC: A Neuro-Symbolic Model for Zero-shot Concept Recognition and
Acquisition at Inference Time [49.067846763204564]
Humans have the remarkable ability to recognize and acquire novel visual concepts in a zero-shot manner.
We introduce Zero-shot Concept Recognition and Acquisition (ZeroC), a neuro-symbolic architecture that can recognize and acquire novel concepts in a zero-shot way.
arXiv Detail & Related papers (2022-06-30T06:24:45Z) - SegDiscover: Visual Concept Discovery via Unsupervised Semantic
Segmentation [29.809900593362844]
SegDiscover is a novel framework that discovers semantically meaningful visual concepts from imagery datasets with complex scenes without supervision.
Our method generates concept primitives from raw images, discovering concepts by clustering in the latent space of a self-supervised pretrained encoder, and concept refinement via neural network smoothing.
arXiv Detail & Related papers (2022-04-22T20:44:42Z) - FALCON: Fast Visual Concept Learning by Integrating Images, Linguistic
descriptions, and Conceptual Relations [99.54048050189971]
We present a framework for learning new visual concepts quickly, guided by multiple naturally occurring data streams.
The learned concepts support downstream applications, such as answering questions by reasoning about unseen images.
We demonstrate the effectiveness of our model on both synthetic and real-world datasets.
arXiv Detail & Related papers (2022-03-30T19:45:00Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
We introduce concept explanations including the class of Concept Activation Vectors (CAV)
We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats.
Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.
arXiv Detail & Related papers (2022-02-25T01:27:31Z) - Interactive Disentanglement: Learning Concepts by Interacting with their
Prototype Representations [15.284688801788912]
We show the advantages of prototype representations for understanding and revising the latent space of neural concept learners.
For this purpose, we introduce interactive Concept Swapping Networks (iCSNs)
iCSNs learn to bind conceptual information to specific prototype slots by swapping the latent representations of paired images.
arXiv Detail & Related papers (2021-12-04T09:25:40Z) - Unsupervised Learning of Compositional Energy Concepts [70.11673173291426]
We propose COMET, which discovers and represents concepts as separate energy functions.
Comet represents both global concepts as well as objects under a unified framework.
arXiv Detail & Related papers (2021-11-04T17:46:12Z) - A Minimalist Dataset for Systematic Generalization of Perception,
Syntax, and Semantics [131.93113552146195]
We present a new dataset, Handwritten arithmetic with INTegers (HINT), to examine machines' capability of learning generalizable concepts.
In HINT, machines are tasked with learning how concepts are perceived from raw signals such as images.
We undertake extensive experiments with various sequence-to-sequence models, including RNNs, Transformers, and GPT-3.
arXiv Detail & Related papers (2021-03-02T01:32:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.