UniCO: Towards a Unified Model for Combinatorial Optimization Problems
- URL: http://arxiv.org/abs/2505.06290v1
- Date: Wed, 07 May 2025 12:39:33 GMT
- Title: UniCO: Towards a Unified Model for Combinatorial Optimization Problems
- Authors: Zefang Zong, Xiaochen Wei, Guozhen Zhang, Chen Gao, Huandong Wang, Yong Li,
- Abstract summary: Combinatorial Optimization (CO) encompasses a wide range of problems that arise in many real-world scenarios.<n>We introduce UniCO, a unified model for solving various CO problems.
- Score: 30.524941693870534
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Combinatorial Optimization (CO) encompasses a wide range of problems that arise in many real-world scenarios. While significant progress has been made in developing learning-based methods for specialized CO problems, a unified model with a single architecture and parameter set for diverse CO problems remains elusive. Such a model would offer substantial advantages in terms of efficiency and convenience. In this paper, we introduce UniCO, a unified model for solving various CO problems. Inspired by the success of next-token prediction, we frame each problem-solving process as a Markov Decision Process (MDP), tokenize the corresponding sequential trajectory data, and train the model using a transformer backbone. To reduce token length in the trajectory data, we propose a CO-prefix design that aggregates static problem features. To address the heterogeneity of state and action tokens within the MDP, we employ a two-stage self-supervised learning approach. In this approach, a dynamic prediction model is first trained and then serves as a pre-trained model for subsequent policy generation. Experiments across 10 CO problems showcase the versatility of UniCO, emphasizing its ability to generalize to new, unseen problems with minimal fine-tuning, achieving even few-shot or zero-shot performance. Our framework offers a valuable complement to existing neural CO methods that focus on optimizing performance for individual problems.
Related papers
- Unsupervised Training of Diffusion Models for Feasible Solution Generation in Neural Combinatorial Optimization [7.85458999849461]
We present IC/DC, an unsupervised CO framework that directly trains a diffusion model from scratch.<n>We train our model in a self-supervised way to minimize the cost of the solution while adhering to the problem-specific constraints.<n> IC/DC achieves state-of-the-art performance relative to existing NCO methods on the Parallel Machine Scheduling Problem (PMSP) and Asymmetric Traveling Salesman Problem (ATSP)
arXiv Detail & Related papers (2024-10-15T06:53:30Z) - Bridging Large Language Models and Optimization: A Unified Framework for Text-attributed Combinatorial Optimization [21.232626415696267]
The Language-based Neural COP solver (LNCS) is a novel framework that is unified for the end-to-end resolution of diverse text-attributed COPs.<n>Extensive experiments validate the effectiveness and generalizability of the LNCS, highlighting its potential as a unified and practical framework for real-world COP applications.
arXiv Detail & Related papers (2024-08-22T08:42:44Z) - Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
An emerging strategy to tackle optimization problems involves the adoption of graph neural networks (GNNs) as an alternative to traditional algorithms.
Despite the growing popularity of GNNs and traditional algorithm solvers in the realm of CO, there is limited research on their integrated use and the correlation between them within an end-to-end framework.
We introduce a decision-focused framework that utilizes GNNs to address CO problems with auxiliary support.
arXiv Detail & Related papers (2024-06-05T22:52:27Z) - Leader Reward for POMO-Based Neural Combinatorial Optimization [8.301694061287565]
We propose Leader Reward to enhance the model's ability to generate optimal solutions.
We demonstrate that Leader Reward greatly improves the quality of the optimal solutions generated by the model.
arXiv Detail & Related papers (2024-05-22T19:27:03Z) - ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting [124.69672273754144]
Chain-of-Thought (CoT) prompting can enhance the reasoning capabilities of large language models (LLMs)
Existing CoT approaches usually focus on simpler reasoning tasks and thus result in low-quality and inconsistent CoT prompts.
We introduce CoTGenius, a novel framework designed for the automatic generation of superior CoT prompts.
arXiv Detail & Related papers (2024-03-21T11:34:26Z) - Sample-Efficient Multi-Agent RL: An Optimization Perspective [103.35353196535544]
We study multi-agent reinforcement learning (MARL) for the general-sum Markov Games (MGs) under the general function approximation.
We introduce a novel complexity measure called the Multi-Agent Decoupling Coefficient (MADC) for general-sum MGs.
We show that our algorithm provides comparable sublinear regret to the existing works.
arXiv Detail & Related papers (2023-10-10T01:39:04Z) - Unsupervised Learning for Combinatorial Optimization Needs Meta-Learning [14.86600327306136]
A general framework of unsupervised learning for optimization (CO) is to train a neural network (NN) whose output gives a problem solution by directly optimizing the CO objective.
We propose a new objective of unsupervised learning for CO where the goal of learning is to search for good initialization for future problem instances rather than give direct solutions.
We observe that even just the initial solution given by our model before fine-tuning can significantly outperform the baselines under various evaluation settings.
arXiv Detail & Related papers (2023-01-08T22:14:59Z) - On the Generalization of Neural Combinatorial Optimization Heuristics [0.7049738935364298]
We show that our proposed meta-learning approach significantly improves the generalization of two state-of-the-art models.
We formalize solving a CO problem over a given instance distribution as a separate learning task.
We investigate meta-learning techniques to learn a model on a variety of tasks, in order to optimize its capacity to adapt to new tasks.
arXiv Detail & Related papers (2022-06-01T22:39:35Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
We propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph.
Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity.
arXiv Detail & Related papers (2021-06-09T09:18:18Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.