Divide (Text) and Conquer (Sentiment): Improved Sentiment Classification by Constituent Conflict Resolution
- URL: http://arxiv.org/abs/2505.06320v1
- Date: Thu, 08 May 2025 21:54:49 GMT
- Title: Divide (Text) and Conquer (Sentiment): Improved Sentiment Classification by Constituent Conflict Resolution
- Authors: Jan Kościałkowski, Paweł Marcinkowski,
- Abstract summary: The aim of this paper is to introduce novel methodologies for isolating conflicting sentiments and aggregating them to effectively predict the overall sentiment of such passages.<n>One of the aggregation strategies involves a Multi-Layer Perceptron (MLP) model which outperforms baseline models across various datasets, including Amazon, Twitter, and SST.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sentiment classification, a complex task in natural language processing, becomes even more challenging when analyzing passages with multiple conflicting tones. Typically, longer passages exacerbate this issue, leading to decreased model performance. The aim of this paper is to introduce novel methodologies for isolating conflicting sentiments and aggregating them to effectively predict the overall sentiment of such passages. One of the aggregation strategies involves a Multi-Layer Perceptron (MLP) model which outperforms baseline models across various datasets, including Amazon, Twitter, and SST while costing $\sim$1/100 of what fine-tuning the baseline would take.
Related papers
- Detecting Statements in Text: A Domain-Agnostic Few-Shot Solution [1.3654846342364308]
State-of-the-art approaches usually involve fine-tuning models on large annotated datasets, which are costly to produce.
We propose and release a qualitative and versatile few-shot learning methodology as a common paradigm for any claim-based textual classification task.
We illustrate this methodology in the context of three tasks: climate change contrarianism detection, topic/stance classification and depression-relates symptoms detection.
arXiv Detail & Related papers (2024-05-09T12:03:38Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - In and Out-of-Domain Text Adversarial Robustness via Label Smoothing [64.66809713499576]
We study the adversarial robustness provided by various label smoothing strategies in foundational models for diverse NLP tasks.
Our experiments show that label smoothing significantly improves adversarial robustness in pre-trained models like BERT, against various popular attacks.
We also analyze the relationship between prediction confidence and robustness, showing that label smoothing reduces over-confident errors on adversarial examples.
arXiv Detail & Related papers (2022-12-20T14:06:50Z) - Decoupled Multi-task Learning with Cyclical Self-Regulation for Face
Parsing [71.19528222206088]
We propose a novel Decoupled Multi-task Learning with Cyclical Self-Regulation for face parsing.
Specifically, DML-CSR designs a multi-task model which comprises face parsing, binary edge, and category edge detection.
Our method achieves the new state-of-the-art performance on the Helen, CelebA-HQ, and LapaMask datasets.
arXiv Detail & Related papers (2022-03-28T02:12:30Z) - Can Unsupervised Knowledge Transfer from Social Discussions Help
Argument Mining? [25.43442712037725]
We propose a novel transfer learning strategy to overcome the challenges of unsupervised, argumentative discourse-aware knowledge.
We utilize argumentation-rich social discussions from the ChangeMyView subreddit as a source of unsupervised, argumentative discourse-aware knowledge.
We introduce a novel prompt-based strategy for inter-component relation prediction that compliments our proposed finetuning method.
arXiv Detail & Related papers (2022-03-24T06:48:56Z) - CONFIT: Toward Faithful Dialogue Summarization with
Linguistically-Informed Contrastive Fine-tuning [5.389540975316299]
Factual inconsistencies in generated summaries severely limit the practical applications of abstractive dialogue summarization.
We provide a typology of factual errors with annotation data to highlight the types of errors and move away from a binary understanding of factuality.
We propose a training strategy that improves the factual consistency and overall quality of summaries via a novel contrastive fine-tuning, called ConFiT.
arXiv Detail & Related papers (2021-12-16T09:08:40Z) - An Evaluation Dataset and Strategy for Building Robust Multi-turn
Response Selection Model [3.20238141000059]
Multi-turn response selection models have recently shown comparable performance to humans in several benchmark datasets.
In the real environment, these models often have weaknesses, such as making incorrect predictions based heavily on superficial patterns.
arXiv Detail & Related papers (2021-09-10T12:36:13Z) - Learning from Partially Overlapping Labels: Image Segmentation under
Annotation Shift [68.6874404805223]
We propose several strategies for learning from partially overlapping labels in the context of abdominal organ segmentation.
We find that combining a semi-supervised approach with an adaptive cross entropy loss can successfully exploit heterogeneously annotated data.
arXiv Detail & Related papers (2021-07-13T09:22:24Z) - Semantic Correspondence with Transformers [68.37049687360705]
We propose Cost Aggregation with Transformers (CATs) to find dense correspondences between semantically similar images.
We include appearance affinity modelling to disambiguate the initial correlation maps and multi-level aggregation.
We conduct experiments to demonstrate the effectiveness of the proposed model over the latest methods and provide extensive ablation studies.
arXiv Detail & Related papers (2021-06-04T14:39:03Z) - A Divide-and-Conquer Approach to the Summarization of Long Documents [4.863209463405628]
We present a novel divide-and-conquer method for the neural summarization of long documents.
Our method exploits the discourse structure of the document and uses sentence similarity to split the problem into smaller summarization problems.
We demonstrate that this approach paired with different summarization models, including sequence-to-sequence RNNs and Transformers, can lead to improved summarization performance.
arXiv Detail & Related papers (2020-04-13T20:38:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.