Reverse-BSDE Monte Carlo
- URL: http://arxiv.org/abs/2505.06800v1
- Date: Sun, 11 May 2025 00:42:07 GMT
- Title: Reverse-BSDE Monte Carlo
- Authors: Jairon H. N. Batista, Flávio B. Gonçalves, Yuri F. Saporito, Rodrigo S. Targino,
- Abstract summary: We reformulate equations governing diffusion-based generative models as a Forward-Backward Differential Equation (FBSDE)<n>We propose a numerical solution to this problem, leveraging on Deep Learning techniques.
- Score: 1.8749305679160366
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recently, there has been a growing interest in generative models based on diffusions driven by the empirical robustness of these methods in generating high-dimensional photorealistic images and the possibility of using the vast existing toolbox of stochastic differential equations. %This remarkable ability may stem from their capacity to model and generate multimodal distributions. In this work, we offer a novel perspective on the approach introduced in Song et al. (2021), shifting the focus from a "learning" problem to a "sampling" problem. To achieve this, we reformulate the equations governing diffusion-based generative models as a Forward-Backward Stochastic Differential Equation (FBSDE), which avoids the well-known issue of pre-estimating the gradient of the log target density. The solution of this FBSDE is proved to be unique using non-standard techniques. Additionally, we propose a numerical solution to this problem, leveraging on Deep Learning techniques. This reformulation opens new pathways for sampling multidimensional distributions with densities known up to a normalization constant, a problem frequently encountered in Bayesian statistics.
Related papers
- Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning [79.65014491424151]
We propose a quantum Discrete Denoising Diffusion Probabilistic Model (QD3PM)<n>It enables joint probability learning through diffusion and denoising in exponentially large Hilbert spaces.<n>This paper establishes a new theoretical paradigm in generative models by leveraging the quantum advantage in joint distribution learning.
arXiv Detail & Related papers (2025-05-08T11:48:21Z) - Unifying and extending Diffusion Models through PDEs for solving Inverse Problems [3.1225172236361165]
Diffusion models have emerged as powerful generative tools with applications in computer vision and scientific machine learning (SciML)<n>Traditionally, these models have been derived using principles of variational inference, denoising, statistical signal processing, and differential equations.<n>In this study we derive diffusion models using ideas from linear partial differential equations and demonstrate that this approach has several benefits.
arXiv Detail & Related papers (2025-04-10T04:07:36Z) - Scalable Discrete Diffusion Samplers: Combinatorial Optimization and Statistical Physics [7.873510219469276]
We introduce two novel training methods for discrete diffusion samplers.<n>These methods yield memory-efficient training and achieve state-of-the-art results in unsupervised optimization.<n>We introduce adaptations of SN-NIS and Neural Chain Monte Carlo that enable for the first time the application of discrete diffusion models to this problem.
arXiv Detail & Related papers (2025-02-12T18:59:55Z) - A Mixture-Based Framework for Guiding Diffusion Models [19.83064246586143]
Denoising diffusion models have driven significant progress in the field of Bayesian inverse problems.<n>Recent approaches use pre-trained diffusion models as priors to solve a wide range of such problems.<n>This work proposes a novel mixture approximation of these intermediate distributions.
arXiv Detail & Related papers (2025-02-05T16:26:06Z) - G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
This paper presents a novel method for addressing linear inverse problems by leveraging image-generation models based on discrete diffusion as priors.
To the best of our knowledge, this is the first approach to use discrete diffusion model-based priors for solving image inverse problems.
arXiv Detail & Related papers (2024-10-09T06:18:25Z) - A Diffusion Model Framework for Unsupervised Neural Combinatorial Optimization [7.378582040635655]
Current deep learning approaches rely on generative models that yield exact sample likelihoods.
This work introduces a method that lifts this restriction and opens the possibility to employ highly expressive latent variable models.
We experimentally validate our approach in data-free Combinatorial Optimization and demonstrate that our method achieves a new state-of-the-art on a wide range of benchmark problems.
arXiv Detail & Related papers (2024-06-03T17:55:02Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
We introduce a novel class of SDE-based solvers called GMS for diffusion models.
Our solver outperforms numerous SDE-based solvers in terms of sample quality in image generation and stroke-based synthesis.
arXiv Detail & Related papers (2023-11-02T02:05:38Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
We inspect the ODE-based sampling of a popular variance-exploding SDE.
We establish a theoretical relationship between the optimal ODE-based sampling and the classic mean-shift (mode-seeking) algorithm.
arXiv Detail & Related papers (2023-05-31T15:33:16Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Score-based Generative Modeling Through Backward Stochastic Differential
Equations: Inversion and Generation [6.2255027793924285]
The proposed BSDE-based diffusion model represents a novel approach to diffusion modeling, which extends the application of differential equations (SDEs) in machine learning.
We demonstrate the theoretical guarantees of the model, the benefits of using Lipschitz networks for score matching, and its potential applications in various areas such as diffusion inversion, conditional diffusion, and uncertainty quantification.
arXiv Detail & Related papers (2023-04-26T01:15:35Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.