Visual Evolutionary Optimization on Combinatorial Problems with Multimodal Large Language Models: A Case Study of Influence Maximization
- URL: http://arxiv.org/abs/2505.06850v1
- Date: Sun, 11 May 2025 05:23:02 GMT
- Title: Visual Evolutionary Optimization on Combinatorial Problems with Multimodal Large Language Models: A Case Study of Influence Maximization
- Authors: Jie Zhao, Kang Hao Cheong,
- Abstract summary: Graph-structured problems in complex networks are prevalent in many domains, and are computationally demanding.<n>Traditional evolutionary algorithms (EAs) often face obstacles due to content-shallow encoding limitations and lack of structural awareness.<n>We introduce an original framework, Visual Evolutionary Optimization (VEO), leveraging multimodal large language models (MLLMs) as the evolutionary backbone.
- Score: 7.890526174400841
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph-structured combinatorial problems in complex networks are prevalent in many domains, and are computationally demanding due to their complexity and non-linear nature. Traditional evolutionary algorithms (EAs), while robust, often face obstacles due to content-shallow encoding limitations and lack of structural awareness, necessitating hand-crafted modifications for effective application. In this work, we introduce an original framework, Visual Evolutionary Optimization (VEO), leveraging multimodal large language models (MLLMs) as the backbone evolutionary optimizer in this context. Specifically, we propose a context-aware encoding way, representing the solution of the network as an image. In this manner, we can utilize MLLMs' image processing capabilities to intuitively comprehend network configurations, thus enabling machines to solve these problems in a human-like way. We have developed MLLM-based operators tailored for various evolutionary optimization stages, including initialization, crossover, and mutation. Furthermore, we propose that graph sparsification can effectively enhance the applicability and scalability of VEO on large-scale networks, owing to the scale-free nature of real-world networks. We demonstrate the effectiveness of our method using a well-known task in complex networks, influence maximization, and validate it on eight different real-world networks of various structures. The results have confirmed VEO's reliability and enhanced effectiveness compared to traditional evolutionary optimization.
Related papers
- Large Language Models for Design Structure Matrix Optimization [4.513609458468522]
In complex engineering systems, the interdependencies among components or development activities are often modeled and analyzed using Design Structure Matrix (DSM)<n>Reorganizing elements within a DSM to minimize feedback loops and enhance modularity or process efficiency constitutes a challenging optimization problem in engineering design and operations.<n>In this study, we explore the potential of Large Language Models (LLMs) for helping solve such CO problems by leveraging their capabilities for advanced reasoning and contextual understanding.
arXiv Detail & Related papers (2025-06-11T13:53:35Z) - Multi-Objective Bayesian Optimization for Networked Black-Box Systems: A Path to Greener Profits and Smarter Designs [0.0]
MOBONS is a novel Bayesian optimization-inspired algorithm that can efficiently optimize general function networks.<n>We demonstrate the effectiveness of MOBONS through two case studies, including one related to sustainable process design.
arXiv Detail & Related papers (2025-02-19T21:49:05Z) - Can Large Language Models Be Trusted as Evolutionary Optimizers for Network-Structured Combinatorial Problems? [8.082897040940447]
Large Language Models (LLMs) have shown strong capabilities in language understanding and reasoning across diverse domains.<n>In this work, we propose a systematic framework to evaluate the capability of LLMs to engage with problem structures.<n>We adopt the commonly used evolutionary (EVO) and propose a comprehensive evaluation framework that rigorously assesses the output fidelity of LLM-based operators.
arXiv Detail & Related papers (2025-01-25T05:19:19Z) - Bridging Visualization and Optimization: Multimodal Large Language Models on Graph-Structured Combinatorial Optimization [56.17811386955609]
Graph-structured challenges are inherently difficult due to their nonlinear and intricate nature.<n>In this study, we propose transforming graphs into images to preserve their higher-order structural features accurately.<n>By combining the innovative paradigm powered by multimodal large language models with simple search techniques, we aim to develop a novel and effective framework.
arXiv Detail & Related papers (2025-01-21T08:28:10Z) - MaVEn: An Effective Multi-granularity Hybrid Visual Encoding Framework for Multimodal Large Language Model [49.931663904599205]
MaVEn is an innovative framework designed to enhance the capabilities of Multimodal Large Language Models (MLLMs) in multi-image reasoning.
We show that MaVEn significantly enhances MLLMs' understanding in complex multi-image scenarios, while also improving performance in single-image contexts.
arXiv Detail & Related papers (2024-08-22T11:57:16Z) - Enhancing Model Performance: Another Approach to Vision-Language Instruction Tuning [0.0]
The integration of large language models (LLMs) with vision-language (VL) tasks has been a transformative development in the realm of artificial intelligence.
We present a novel approach, termed Bottleneck Adapter, specifically crafted for enhancing the multimodal functionalities of these complex models.
Our approach utilizes lightweight adapters to connect the image encoder and LLM without the need for large, complex neural networks.
arXiv Detail & Related papers (2024-07-25T06:59:15Z) - Multi-Domain Evolutionary Optimization of Network Structures [25.658524436665637]
We develop a novel framework for multi-domain evolutionary optimization (MDEO)
Experiments on eight real-world networks of different domains demonstrate MDEO superiority in efficacy compared to classical evolutionary optimization.
Simulations of attacks on the community validate the effectiveness of the proposed MDEO in safeguarding community security.
arXiv Detail & Related papers (2024-06-21T04:53:39Z) - AMOSL: Adaptive Modality-wise Structure Learning in Multi-view Graph Neural Networks For Enhanced Unified Representation [22.84527318463151]
Multi-view Graph Neural Networks (MVGNNs) excel at leveraging diverse modalities for learning object representation.
Existing methods assume identical local topology structures across modalities that overlook real-world discrepancies.
We propose adaptive modality-wise structure learning (AMoSL) to address these issues.
arXiv Detail & Related papers (2024-06-04T14:24:30Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Federated Multi-Level Optimization over Decentralized Networks [55.776919718214224]
We study the problem of distributed multi-level optimization over a network, where agents can only communicate with their immediate neighbors.
We propose a novel gossip-based distributed multi-level optimization algorithm that enables networked agents to solve optimization problems at different levels in a single timescale.
Our algorithm achieves optimal sample complexity, scaling linearly with the network size, and demonstrates state-of-the-art performance on various applications.
arXiv Detail & Related papers (2023-10-10T00:21:10Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.