NeuRN: Neuro-inspired Domain Generalization for Image Classification
- URL: http://arxiv.org/abs/2505.06881v1
- Date: Sun, 11 May 2025 07:20:11 GMT
- Title: NeuRN: Neuro-inspired Domain Generalization for Image Classification
- Authors: Hamd Jalil, Ahmed Qazi, Asim Iqbal,
- Abstract summary: We introduce a neuro-inspired Neural Response Normalization layer which draws inspiration from neurons in the mammalian visual cortex.<n>Our results demonstrate the effectiveness of NeuRN by showing improvement against baseline in cross-domain image classification tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Domain generalization in image classification is a crucial challenge, with models often failing to generalize well across unseen datasets. We address this issue by introducing a neuro-inspired Neural Response Normalization (NeuRN) layer which draws inspiration from neurons in the mammalian visual cortex, which aims to enhance the performance of deep learning architectures on unseen target domains by training deep learning models on a source domain. The performance of these models is considered as a baseline and then compared against models integrated with NeuRN on image classification tasks. We perform experiments across a range of deep learning architectures, including ones derived from Neural Architecture Search and Vision Transformer. Additionally, in order to shortlist models for our experiment from amongst the vast range of deep neural networks available which have shown promising results, we also propose a novel method that uses the Needleman-Wunsch algorithm to compute similarity between deep learning architectures. Our results demonstrate the effectiveness of NeuRN by showing improvement against baseline in cross-domain image classification tasks. Our framework attempts to establish a foundation for future neuro-inspired deep learning models.
Related papers
- Planarian Neural Networks: Evolutionary Patterns from Basic Bilateria Shaping Modern Artificial Neural Network Architectures [7.054776300100835]
The aim of this study is to improve the image classification performance of ANNs via a novel approach inspired by the biological nervous system architecture of planarians.<n>The proposed planarian neural architecture-based neural network was evaluated on the CIFAR-10 and CIFAR-100 datasets.
arXiv Detail & Related papers (2025-01-08T18:59:36Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
This paper introduces the SANE approach to weight-space learning.
Our method extends the idea of hyper-representations towards sequential processing of subsets of neural network weights.
arXiv Detail & Related papers (2024-06-14T13:12:07Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Analyzing Populations of Neural Networks via Dynamical Model Embedding [10.455447557943463]
A core challenge in the interpretation of deep neural networks is identifying commonalities between the underlying algorithms implemented by distinct networks trained for the same task.
Motivated by this problem, we introduce DYNAMO, an algorithm that constructs low-dimensional manifold where each point corresponds to a neural network model, and two points are nearby if the corresponding neural networks enact similar high-level computational processes.
DYNAMO takes as input a collection of pre-trained neural networks and outputs a meta-model that emulates the dynamics of the hidden states as well as the outputs of any model in the collection.
arXiv Detail & Related papers (2023-02-27T19:00:05Z) - DQNAS: Neural Architecture Search using Reinforcement Learning [6.33280703577189]
Convolutional Neural Networks have been used in a variety of image related applications.
In this paper, we propose an automated Neural Architecture Search framework, guided by the principles of Reinforcement Learning.
arXiv Detail & Related papers (2023-01-17T04:01:47Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
We present a new training scheme that adds noise at multiple stages of an existing neural architecture while simultaneously learning to be robust to this added noise.
This architecture, which we call a Self-Denoising Neural Network (SDNN), can be applied easily to most modern convolutional neural architectures.
arXiv Detail & Related papers (2021-10-26T03:28:36Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Comparative evaluation of CNN architectures for Image Caption Generation [1.2183405753834562]
We have evaluated 17 different Convolutional Neural Networks on two popular Image Caption Generation frameworks.
We observe that model complexity of Convolutional Neural Network, as measured by number of parameters, and the accuracy of the model on Object Recognition task does not necessarily co-relate with its efficacy on feature extraction for Image Caption Generation task.
arXiv Detail & Related papers (2021-02-23T05:43:54Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.