A Vision-Language Foundation Model for Leaf Disease Identification
- URL: http://arxiv.org/abs/2505.07019v1
- Date: Sun, 11 May 2025 15:30:06 GMT
- Title: A Vision-Language Foundation Model for Leaf Disease Identification
- Authors: Khang Nguyen Quoc, Lan Le Thi Thu, Luyl-Da Quach,
- Abstract summary: Leaf disease identification plays a pivotal role in smart agriculture.<n>Many existing studies still struggle to integrate image and textual modalities to compensate for each other's limitations.<n>We propose SCOLD, a context-aware vision-language foundation model to address these challenges.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Leaf disease identification plays a pivotal role in smart agriculture. However, many existing studies still struggle to integrate image and textual modalities to compensate for each other's limitations. Furthermore, many of these approaches rely on pretraining with constrained datasets such as ImageNet, which lack domain-specific information. We propose SCOLD (Soft-target COntrastive learning for Leaf Disease identification), a context-aware vision-language foundation model tailored to address these challenges for agricultural tasks. SCOLD is developed using a diverse corpus of plant leaf images and corresponding symptom descriptions, comprising over 186,000 image-caption pairs aligned with 97 unique concepts. Through task-agnostic pretraining, SCOLD leverages contextual soft targets to mitigate overconfidence in contrastive learning by smoothing labels, thereby improving model generalization and robustness on fine-grained classification tasks. Experimental results demonstrate that SCOLD outperforms existing vision-language models such as OpenAI-CLIP-L, BioCLIP, and SigLIP2 across several benchmarks, including zero-shot and few-shot classification, image-text retrieval, and image classification, while maintaining a competitive parameter footprint. Ablation studies further highlight SCOLD's effectiveness in contrast to its counterparts. The proposed approach significantly advances the agricultural vision-language foundation model, offering strong performance with minimal or no supervised fine-tuning. This work lays a solid groundwork for future research on models trained with long-form and simplified contexts, tasks involving class ambiguity, and multi-modal systems for intelligent plant disease diagnostics. The code for this study is available at https://huggingface.co/enalis/scold
Related papers
- HiLa: Hierarchical Vision-Language Collaboration for Cancer Survival Prediction [55.00788339683146]
We propose a novel Hierarchical vision-Language collaboration framework for improved survival prediction.<n> Specifically, HiLa employs pretrained feature extractors to generate hierarchical visual features from WSIs at both patch and region levels.<n>This ap-proach enables the comprehensive learning of discriminative visual features cor-responding to different survival-related attributes from prompts.
arXiv Detail & Related papers (2025-07-07T02:06:25Z) - CLIP-IT: CLIP-based Pairing for Histology Images Classification [6.5280377968471]
Multimodal learning has shown promise in medical image analysis, combining complementary modalities like histology images and text.<n>We introduce CLIP-IT, a novel framework that relies on rich unpaired text reports, eliminating paired data requirement.<n> Experiments on histology image datasets confirm that CLIP-IT consistently improves classification accuracy over both unimodal and multimodal CLIP-based baselines.
arXiv Detail & Related papers (2025-04-22T18:14:43Z) - MGPATH: Vision-Language Model with Multi-Granular Prompt Learning for Few-Shot WSI Classification [19.29480118378639]
Whole slide pathology image classification presents challenges due to gigapixel image sizes and limited annotation labels.<n>This paper introduces a prompt learning method to adapt large vision-language models for few-shot pathology classification.
arXiv Detail & Related papers (2025-02-11T09:42:13Z) - Efficient Few-Shot Medical Image Analysis via Hierarchical Contrastive Vision-Language Learning [44.99833362998488]
We propose Adaptive Vision-Language Fine-tuning with Hierarchical Contrastive Alignment (HiCA) for medical image analysis.<n>HiCA combines domain-specific pretraining and hierarchical contrastive learning to align visual and textual representations at multiple levels.<n>We evaluate our approach on two benchmark datasets, Chest X-ray and Breast Ultrasound.
arXiv Detail & Related papers (2025-01-16T05:01:30Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
Image Quality Assessment (IQA) models benefit significantly from semantic information, which allows them to treat different types of objects distinctly.
Traditional methods, hindered by a lack of sufficiently annotated data, have employed the CLIP image-text pretraining model as their backbone to gain semantic awareness.
Recent approaches have attempted to address this mismatch using prompt technology, but these solutions have shortcomings.
This paper introduces an innovative multi-modal prompt-based methodology for IQA.
arXiv Detail & Related papers (2024-04-23T11:45:32Z) - FINEMATCH: Aspect-based Fine-grained Image and Text Mismatch Detection and Correction [66.98008357232428]
We propose FineMatch, a new aspect-based fine-grained text and image matching benchmark.
FineMatch focuses on text and image mismatch detection and correction.
We show that models trained on FineMatch demonstrate enhanced proficiency in detecting fine-grained text and image mismatches.
arXiv Detail & Related papers (2024-04-23T03:42:14Z) - Towards a Visual-Language Foundation Model for Computational Pathology [5.72536252929528]
We introduce CONtrastive learning from Captions for Histopathology (CONCH)
CONCH is a visual-language foundation model developed using diverse sources of histopathology images, biomedical text, and task-agnostic pretraining.
It is evaluated on a suite of 13 diverse benchmarks, achieving state-of-the-art performance on histology image classification, segmentation, captioning, text-to-image and image-to-text retrieval.
arXiv Detail & Related papers (2023-07-24T16:13:43Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z) - SgVA-CLIP: Semantic-guided Visual Adapting of Vision-Language Models for
Few-shot Image Classification [84.05253637260743]
We propose a new framework, named Semantic-guided Visual Adapting (SgVA), to extend vision-language pre-trained models.
SgVA produces discriminative task-specific visual features by comprehensively using a vision-specific contrastive loss, a cross-modal contrastive loss, and an implicit knowledge distillation.
State-of-the-art results on 13 datasets demonstrate that the adapted visual features can well complement the cross-modal features to improve few-shot image classification.
arXiv Detail & Related papers (2022-11-28T14:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.