Cache-Efficient Posterior Sampling for Reinforcement Learning with LLM-Derived Priors Across Discrete and Continuous Domains
- URL: http://arxiv.org/abs/2505.07274v1
- Date: Mon, 12 May 2025 06:53:24 GMT
- Title: Cache-Efficient Posterior Sampling for Reinforcement Learning with LLM-Derived Priors Across Discrete and Continuous Domains
- Authors: Ibne Farabi Shihab, Sanjeda Akter, Anuj Sharma,
- Abstract summary: Large language models (LLMs) as priors in reinforcement learning (RL) offers significant advantages but comes with substantial computational costs.<n>We present a principled cache-efficient framework for posterior sampling with LLM-derived priors that dramatically reduces these costs while maintaining high performance.
- Score: 2.1797343876622097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integrating large language models (LLMs) as priors in reinforcement learning (RL) offers significant advantages but comes with substantial computational costs. We present a principled cache-efficient framework for posterior sampling with LLM-derived priors that dramatically reduces these costs while maintaining high performance. At the core of our approach is an adaptive caching mechanism, where cache parameters are meta-optimized using surrogate gradients derived from policy performance. This design enables efficient inference across both discrete text environments (e.g., TextWorld, ALFWorld) and continuous control domains (e.g., MuJoCo), achieving a 3.8--4.7$\times$ reduction in LLM queries and 4.0--12.0$\times$ lower median latencies (85--93\,ms on a consumer GPU) while retaining 96--98\% of uncached performance. Our theoretical analysis provides KL divergence bounds on approximation quality, validated empirically. The framework extends to offline RL, where our CQL-Prior variant improves performance by 14--29\% and reduces training time by 38--40\%. Extensive evaluations across a diverse suite of eight tasks demonstrate the generalizability and practical viability of LLM-guided RL in resource-constrained settings.
Related papers
- RL-PLUS: Countering Capability Boundary Collapse of LLMs in Reinforcement Learning with Hybrid-policy Optimization [86.30192066451256]
We propose RL-PLUS, a novel hybrid-policy optimization approach for Large Language Models (LLMs)<n> RL-PLUS synergizes internal exploitation with external data to achieve stronger reasoning capabilities and surpass the boundaries of base models.<n>We provide both theoretical analysis and extensive experiments to demonstrate the superiority and generalizability of our approach.
arXiv Detail & Related papers (2025-07-31T23:55:29Z) - IAM: Efficient Inference through Attention Mapping between Different-scale LLMs [74.81417160018856]
IAM framework achieves dual benefits of accelerated attention computation and reduced KV cache usage.<n>We show that IAM can accelerate prefill by 15% and reduce KV cache usage by 22.1% without appreciably sacrificing performance.
arXiv Detail & Related papers (2025-07-16T06:39:11Z) - Boosting Parameter Efficiency in LLM-Based Recommendation through Sophisticated Pruning [44.747749293948864]
This work explores pruning to improve efficiency while maintaining recommendation quality.<n>We propose a more fine-grained pruning approach that integrates both intra-layer and layer-wise pruning.<n>Our approach achieves an average of 88% of the original model's performance while pruning more than 95% of the non-embedding parameters.
arXiv Detail & Related papers (2025-07-09T17:26:10Z) - Accelerating RL for LLM Reasoning with Optimal Advantage Regression [52.0792918455501]
We propose a novel two-stage policy optimization framework that directly approximates the optimal advantage function.<n>$A$*-PO achieves competitive performance across a wide range of mathematical reasoning benchmarks.<n>It reduces training time by up to 2$times$ and peak memory usage by over 30% compared to PPO, GRPO, and REBEL.
arXiv Detail & Related papers (2025-05-27T03:58:50Z) - EfficientLLM: Efficiency in Large Language Models [64.3537131208038]
Large Language Models (LLMs) have driven significant progress, yet their growing counts and context windows incur prohibitive compute, energy, and monetary costs.<n>We introduce EfficientLLM, a novel benchmark and the first comprehensive empirical study evaluating efficiency techniques for LLMs at scale.
arXiv Detail & Related papers (2025-05-20T02:27:08Z) - LENSLLM: Unveiling Fine-Tuning Dynamics for LLM Selection [11.353302879735862]
Open-sourced Large Language Models (LLMs) and diverse downstream tasks require efficient model selection.<n>We propose a novel theoretical framework that provides a proper lens to assess the generalization capabilities of LLMs.<n>Our model achieves up to 91.1% accuracy and reduces up to 88.5% computational cost in LLM selection, outperforming 5 state-of-the-art methods.
arXiv Detail & Related papers (2025-05-01T15:07:32Z) - Reinforcement Learning for Reasoning in Small LLMs: What Works and What Doesn't [0.0]
Our study investigates the potential of reinforcement learning to improve reasoning in small language models (LLMs)<n>Training on 4 NVIDIA A40 GPUs (48 GB VRAM each) within 24 hours resulted in rapid reasoning gains.<n>These findings highlight the efficacy of RL-based fine-tuning for small LLMs, offering a cost-effective alternative to large-scale approaches.
arXiv Detail & Related papers (2025-03-20T15:13:23Z) - Online Scheduling for LLM Inference with KV Cache Constraints [22.155429544207827]
Large Language Model (LLM) inference is an intensive process requiring efficient scheduling to optimize latency and resource utilization.<n>We propose novel and scheduling algorithms that minimize inference latency while effectively managing the KV cache's memory.<n>Our results offer a path toward more sustainable and cost-effective LLM deployment.
arXiv Detail & Related papers (2025-02-10T23:11:44Z) - VinePPO: Refining Credit Assignment in RL Training of LLMs [66.80143024475635]
We propose VinePPO, a straightforward approach that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates.<n>Our method consistently outperforms PPO and other baselines across MATH and GSM8K datasets in less wall-clock time.
arXiv Detail & Related papers (2024-10-02T15:49:30Z) - Search for Efficient Large Language Models [52.98684997131108]
Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research.
Weight pruning, quantization, and distillation have been embraced to compress LLMs, targeting memory reduction and inference acceleration.
Most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures.
arXiv Detail & Related papers (2024-09-25T21:32:12Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
We propose an optimization-based structural pruning on Large-Language Models.
We learn the pruning masks in a probabilistic space directly by optimizing the loss of the pruned model.
Our method operates for 2.7 hours with around 35GB memory for the 13B models on a single A100 GPU.
arXiv Detail & Related papers (2024-06-15T09:31:03Z) - Adaptive Layer Splitting for Wireless LLM Inference in Edge Computing: A Model-Based Reinforcement Learning Approach [18.153641696306707]
This study introduces a framework taking inspiration from model-based reinforcement learning (MBRL) to determine the optimal splitting point across the edge and user equipment (UE)
By incorporating a reward surrogate model, our approach significantly reduces the computational cost of frequent performance evaluations.
arXiv Detail & Related papers (2024-06-03T09:41:42Z) - Value Augmented Sampling for Language Model Alignment and Personalization [39.070662999014836]
We present a new framework for reward optimization, Value Augmented Sampling (VAS)
VAS solves for the optimal reward-maximizing policy without co-training the policy and the value function.
Our algorithm unlocks the new capability of composing several rewards and controlling the extent of each one during deployment time.
arXiv Detail & Related papers (2024-05-10T17:59:04Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.