Representation Learning with Mutual Influence of Modalities for Node Classification in Multi-Modal Heterogeneous Networks
- URL: http://arxiv.org/abs/2505.07895v3
- Date: Thu, 19 Jun 2025 09:49:10 GMT
- Title: Representation Learning with Mutual Influence of Modalities for Node Classification in Multi-Modal Heterogeneous Networks
- Authors: Jiafan Li, Jiaqi Zhu, Liang Chang, Yilin Li, Miaomiao Li, Yang Wang, Hongan Wang,
- Abstract summary: We propose a novel model for node classification in MMHNs, named Heterogeneous Graph Neural Network with Inter-Modal Attention (HGNN-IMA)<n>In this paper, we propose a novel model for node classification in MMHNs, named Heterogeneous Graph Neural Network with Inter-Modal Attention (HGNN-IMA)
- Score: 16.669479456576322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nowadays, numerous online platforms can be described as multi-modal heterogeneous networks (MMHNs), such as Douban's movie networks and Amazon's product review networks. Accurately categorizing nodes within these networks is crucial for analyzing the corresponding entities, which requires effective representation learning on nodes. However, existing multi-modal fusion methods often adopt either early fusion strategies which may lose the unique characteristics of individual modalities, or late fusion approaches overlooking the cross-modal guidance in GNN-based information propagation. In this paper, we propose a novel model for node classification in MMHNs, named Heterogeneous Graph Neural Network with Inter-Modal Attention (HGNN-IMA). It learns node representations by capturing the mutual influence of multiple modalities during the information propagation process, within the framework of heterogeneous graph transformer. Specifically, a nested inter-modal attention mechanism is integrated into the inter-node attention to achieve adaptive multi-modal fusion, and modality alignment is also taken into account to encourage the propagation among nodes with consistent similarities across all modalities. Moreover, an attention loss is augmented to mitigate the impact of missing modalities. Extensive experiments validate the superiority of the model in the node classification task, providing an innovative view to handle multi-modal data, especially when accompanied with network structures.
Related papers
- Domain-adaptive Message Passing Graph Neural Network [67.35534058138387]
Cross-network node classification (CNNC) aims to classify nodes in a label-deficient target network by transferring the knowledge from a source network with abundant labels.
We propose a domain-adaptive message passing graph neural network (DM-GNN), which integrates graph neural network (GNN) with conditional adversarial domain adaptation.
arXiv Detail & Related papers (2023-08-31T05:26:08Z) - Multiplex Heterogeneous Graph Convolutional Network [25.494590588212542]
This work proposes a Multiplex Heterogeneous Graph Convolutional Network (MHGCN) for heterogeneous network embedding.
Our MHGCN can automatically learn the useful heterogeneous meta-path interactions of different lengths in multiplex heterogeneous networks.
arXiv Detail & Related papers (2022-08-12T06:17:54Z) - HybridGNN: Learning Hybrid Representation in Multiplex Heterogeneous
Networks [26.549559266395775]
We propose HybridGNN, an end-to-end graph neural network model with hybrid aggregation flows and hierarchical attentions.
We show that HybridGNN achieves the best performance compared to several state-of-the-art baselines.
arXiv Detail & Related papers (2022-08-03T13:39:47Z) - Mixed Graph Contrastive Network for Semi-Supervised Node Classification [63.924129159538076]
We propose a novel graph contrastive learning method, termed Mixed Graph Contrastive Network (MGCN)<n>In our method, we improve the discriminative capability of the latent embeddings by an unperturbed augmentation strategy and a correlation reduction mechanism.<n>By combining the two settings, we extract rich supervision information from both the abundant nodes and the rare yet valuable labeled nodes for discriminative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Pay Attention to Relations: Multi-embeddings for Attributed Multiplex
Networks [0.0]
RAHMeN is a novel unified relation-aware embedding framework for attributed heterogeneous multiplex networks.
Our model incorporates node attributes, motif-based features, relation-based GCN approaches, and relational self-attention to learn embeddings of nodes.
We evaluate our model on four real-world datasets from Amazon, Twitter, YouTube, and Tissue PPIs in both transductive and inductive settings.
arXiv Detail & Related papers (2022-03-03T18:31:29Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - GAHNE: Graph-Aggregated Heterogeneous Network Embedding [32.44836376873812]
Heterogeneous network embedding aims to embed nodes into low-dimensional vectors which capture rich intrinsic information of heterogeneous networks.
Existing models either depend on manually designing meta-paths, ignore mutual effects between different semantics, or omit some aspects of information from global networks.
In GAHNE model, we develop several mechanisms that can aggregate semantic representations from different single-type sub-networks as well as fuse the global information into final embeddings.
arXiv Detail & Related papers (2020-12-23T07:11:30Z) - Multi-View Dynamic Heterogeneous Information Network Embedding [3.8093526291513347]
We propose a novel framework for incorporating temporal information into HIN embedding, denoted as Multi-View Dynamic HIN Embedding (MDHNE)
Our proposed MDHNE applies Recurrent Neural Network (RNN) to incorporate evolving pattern of complex network structure and semantic relationships between nodes into latent embedding spaces.
Our model outperforms state-of-the-art baselines on three real-world dynamic datasets for different network mining tasks.
arXiv Detail & Related papers (2020-11-12T12:33:29Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
We propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning.
Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions.
We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba.
arXiv Detail & Related papers (2020-07-19T22:50:20Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - Unsupervised Differentiable Multi-aspect Network Embedding [52.981277420394846]
We propose a novel end-to-end framework for multi-aspect network embedding, called asp2vec.
Our proposed framework can be readily extended to heterogeneous networks.
arXiv Detail & Related papers (2020-06-07T19:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.