Re$^2$: A Consistency-ensured Dataset for Full-stage Peer Review and Multi-turn Rebuttal Discussions
- URL: http://arxiv.org/abs/2505.07920v1
- Date: Mon, 12 May 2025 16:02:52 GMT
- Title: Re$^2$: A Consistency-ensured Dataset for Full-stage Peer Review and Multi-turn Rebuttal Discussions
- Authors: Daoze Zhang, Zhijian Bao, Sihang Du, Zhiyi Zhao, Kuangling Zhang, Dezheng Bao, Yang Yang,
- Abstract summary: We introduce the largest consistency-ensured peer review and rebuttal dataset named Re2.<n>This dataset comprises 19,926 initial submissions, 70,668 review comments, and 53,818 rebuttals from 24 conferences and 21 workshops on OpenReview.
- Score: 2.5226834810382113
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Peer review is a critical component of scientific progress in the fields like AI, but the rapid increase in submission volume has strained the reviewing system, which inevitably leads to reviewer shortages and declines review quality. Besides the growing research popularity, another key factor in this overload is the repeated resubmission of substandard manuscripts, largely due to the lack of effective tools for authors to self-evaluate their work before submission. Large Language Models (LLMs) show great promise in assisting both authors and reviewers, and their performance is fundamentally limited by the quality of the peer review data. However, existing peer review datasets face three major limitations: (1) limited data diversity, (2) inconsistent and low-quality data due to the use of revised rather than initial submissions, and (3) insufficient support for tasks involving rebuttal and reviewer-author interactions. To address these challenges, we introduce the largest consistency-ensured peer review and rebuttal dataset named Re^2, which comprises 19,926 initial submissions, 70,668 review comments, and 53,818 rebuttals from 24 conferences and 21 workshops on OpenReview. Moreover, the rebuttal and discussion stage is framed as a multi-turn conversation paradigm to support both traditional static review tasks and dynamic interactive LLM assistants, providing more practical guidance for authors to refine their manuscripts and helping alleviate the growing review burden. Our data and code are available in https://anonymous.4open.science/r/ReviewBench_anon/.
Related papers
- LazyReview A Dataset for Uncovering Lazy Thinking in NLP Peer Reviews [74.87393214734114]
This work introduces LazyReview, a dataset of peer-review sentences annotated with fine-grained lazy thinking categories.<n>Large Language Models (LLMs) struggle to detect these instances in a zero-shot setting.<n> instruction-based fine-tuning on our dataset significantly boosts performance by 10-20 performance points.
arXiv Detail & Related papers (2025-04-15T10:07:33Z) - Understanding and Supporting Peer Review Using AI-reframed Positive Summary [18.686807993563168]
This study explored the impact of appending an automatically generated positive summary to the peer reviews of a writing task.<n>We found that adding an AI-reframed positive summary to otherwise harsh feedback increased authors' critique acceptance.<n>We discuss the implications of using AI in peer feedback, focusing on how it can influence critique acceptance and support research communities.
arXiv Detail & Related papers (2025-03-13T11:22:12Z) - Are We There Yet? Revealing the Risks of Utilizing Large Language Models in Scholarly Peer Review [66.73247554182376]
Large language models (LLMs) have led to their integration into peer review.<n>The unchecked adoption of LLMs poses significant risks to the integrity of the peer review system.<n>We show that manipulating 5% of the reviews could potentially cause 12% of the papers to lose their position in the top 30% rankings.
arXiv Detail & Related papers (2024-12-02T16:55:03Z) - AgentReview: Exploring Peer Review Dynamics with LLM Agents [13.826819101545926]
We introduce AgentReview, the first large language model (LLM) based peer review simulation framework.
Our study reveals significant insights, including a notable 37.1% variation in paper decisions due to reviewers' biases.
arXiv Detail & Related papers (2024-06-18T15:22:12Z) - What Can Natural Language Processing Do for Peer Review? [173.8912784451817]
In modern science, peer review is widely used, yet it is hard, time-consuming, and prone to error.
Since the artifacts involved in peer review are largely text-based, Natural Language Processing has great potential to improve reviewing.
We detail each step of the process from manuscript submission to camera-ready revision, and discuss the associated challenges and opportunities for NLP assistance.
arXiv Detail & Related papers (2024-05-10T16:06:43Z) - When Reviewers Lock Horn: Finding Disagreement in Scientific Peer
Reviews [24.875901048855077]
We introduce a novel task of automatically identifying contradictions among reviewers on a given article.
To the best of our knowledge, we make the first attempt to identify disagreements among peer reviewers automatically.
arXiv Detail & Related papers (2023-10-28T11:57:51Z) - Scientific Opinion Summarization: Paper Meta-review Generation Dataset, Methods, and Evaluation [55.00687185394986]
We propose the task of scientific opinion summarization, where research paper reviews are synthesized into meta-reviews.
We introduce the ORSUM dataset covering 15,062 paper meta-reviews and 57,536 paper reviews from 47 conferences.
Our experiments show that (1) human-written summaries do not always satisfy all necessary criteria such as depth of discussion, and identifying consensus and controversy for the specific domain, and (2) the combination of task decomposition and iterative self-refinement shows strong potential for enhancing the opinions.
arXiv Detail & Related papers (2023-05-24T02:33:35Z) - MOPRD: A multidisciplinary open peer review dataset [12.808751859133064]
Open peer review is a growing trend in academic publications.
Most of the existing peer review datasets do not provide data that cover the whole peer review process.
We construct MOPRD, a multidisciplinary open peer review dataset.
arXiv Detail & Related papers (2022-12-09T16:35:14Z) - Yes-Yes-Yes: Donation-based Peer Reviewing Data Collection for ACL
Rolling Review and Beyond [58.71736531356398]
We present an in-depth discussion of peer reviewing data, outline the ethical and legal desiderata for peer reviewing data collection, and propose the first continuous, donation-based data collection workflow.
We report on the ongoing implementation of this workflow at the ACL Rolling Review and deliver the first insights obtained with the newly collected data.
arXiv Detail & Related papers (2022-01-27T11:02:43Z) - Ranking Scientific Papers Using Preference Learning [48.78161994501516]
We cast it as a paper ranking problem based on peer review texts and reviewer scores.
We introduce a novel, multi-faceted generic evaluation framework for making final decisions based on peer reviews.
arXiv Detail & Related papers (2021-09-02T19:41:47Z) - Can We Automate Scientific Reviewing? [89.50052670307434]
We discuss the possibility of using state-of-the-art natural language processing (NLP) models to generate first-pass peer reviews for scientific papers.
We collect a dataset of papers in the machine learning domain, annotate them with different aspects of content covered in each review, and train targeted summarization models that take in papers to generate reviews.
Comprehensive experimental results show that system-generated reviews tend to touch upon more aspects of the paper than human-written reviews.
arXiv Detail & Related papers (2021-01-30T07:16:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.