What Matters for Batch Online Reinforcement Learning in Robotics?
- URL: http://arxiv.org/abs/2505.08078v1
- Date: Mon, 12 May 2025 21:24:22 GMT
- Title: What Matters for Batch Online Reinforcement Learning in Robotics?
- Authors: Perry Dong, Suvir Mirchandani, Dorsa Sadigh, Chelsea Finn,
- Abstract summary: The ability to learn from large batches of autonomously collected data for policy improvement holds the promise of enabling truly scalable robot learning.<n>Previous works have applied imitation learning and filtered imitation learning methods to the batch online RL problem.<n>We analyze how these axes affect performance and scaling with the amount of autonomous data.
- Score: 65.06558240091758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to learn from large batches of autonomously collected data for policy improvement -- a paradigm we refer to as batch online reinforcement learning -- holds the promise of enabling truly scalable robot learning by significantly reducing the need for human effort of data collection while getting benefits from self-improvement. Yet, despite the promise of this paradigm, it remains challenging to achieve due to algorithms not being able to learn effectively from the autonomous data. For example, prior works have applied imitation learning and filtered imitation learning methods to the batch online RL problem, but these algorithms often fail to efficiently improve from the autonomously collected data or converge quickly to a suboptimal point. This raises the question of what matters for effective batch online RL in robotics. Motivated by this question, we perform a systematic empirical study of three axes -- (i) algorithm class, (ii) policy extraction methods, and (iii) policy expressivity -- and analyze how these axes affect performance and scaling with the amount of autonomous data. Through our analysis, we make several observations. First, we observe that the use of Q-functions to guide batch online RL significantly improves performance over imitation-based methods. Building on this, we show that an implicit method of policy extraction -- via choosing the best action in the distribution of the policy -- is necessary over traditional policy extraction methods from offline RL. Next, we show that an expressive policy class is preferred over less expressive policy classes. Based on this analysis, we propose a general recipe for effective batch online RL. We then show a simple addition to the recipe of using temporally-correlated noise to obtain more diversity results in further performance gains. Our recipe obtains significantly better performance and scaling compared to prior methods.
Related papers
- Reinforcement Learning with Action Chunking [56.838297900091426]
We present Q-chunking, a recipe for improving reinforcement learning algorithms for long-horizon, sparse-reward tasks.<n>Our recipe is designed for the offline-to-online RL setting, where the goal is to leverage an offline prior dataset to maximize the sample-efficiency of online learning.<n>Our experimental results demonstrate that Q-chunking exhibits strong offline performance and online sample efficiency, outperforming prior best offline-to-online methods on a range of long-horizon, sparse-reward manipulation tasks.
arXiv Detail & Related papers (2025-07-10T17:48:03Z) - Efficient Preference-based Reinforcement Learning via Aligned Experience Estimation [37.36913210031282]
Preference-based reinforcement learning (PbRL) has shown impressive capabilities in training agents without reward engineering.
We propose SEER, an efficient PbRL method that integrates label smoothing and policy regularization techniques.
arXiv Detail & Related papers (2024-05-29T01:49:20Z) - Statistically Efficient Variance Reduction with Double Policy Estimation
for Off-Policy Evaluation in Sequence-Modeled Reinforcement Learning [53.97273491846883]
We propose DPE: an RL algorithm that blends offline sequence modeling and offline reinforcement learning with Double Policy Estimation.
We validate our method in multiple tasks of OpenAI Gym with D4RL benchmarks.
arXiv Detail & Related papers (2023-08-28T20:46:07Z) - Iteratively Refined Behavior Regularization for Offline Reinforcement
Learning [57.10922880400715]
In this paper, we propose a new algorithm that substantially enhances behavior-regularization based on conservative policy iteration.
By iteratively refining the reference policy used for behavior regularization, conservative policy update guarantees gradually improvement.
Experimental results on the D4RL benchmark indicate that our method outperforms previous state-of-the-art baselines in most tasks.
arXiv Detail & Related papers (2023-06-09T07:46:24Z) - Offline Robot Reinforcement Learning with Uncertainty-Guided Human
Expert Sampling [11.751910133386254]
Recent advances in batch (offline) reinforcement learning have shown promising results in learning from available offline data.
We propose a novel approach that uses uncertainty estimation to trigger the injection of human demonstration data.
Our experiments show that this approach is more sample efficient when compared to a naive way of combining expert data with data collected from a sub-optimal agent.
arXiv Detail & Related papers (2022-12-16T01:41:59Z) - Implicit Offline Reinforcement Learning via Supervised Learning [83.8241505499762]
Offline Reinforcement Learning (RL) via Supervised Learning is a simple and effective way to learn robotic skills from a dataset collected by policies of different expertise levels.
We show how implicit models can leverage return information and match or outperform explicit algorithms to acquire robotic skills from fixed datasets.
arXiv Detail & Related papers (2022-10-21T21:59:42Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Reinforcement Learning in the Wild: Scalable RL Dispatching Algorithm
Deployed in Ridehailing Marketplace [12.298997392937876]
This study proposes a real-time dispatching algorithm based on reinforcement learning.
It is deployed online in multiple cities under DiDi's operation for A/B testing and is launched in one of the major international markets.
The deployed algorithm shows over 1.3% improvement in total driver income from A/B testing.
arXiv Detail & Related papers (2022-02-10T16:07:17Z) - AWAC: Accelerating Online Reinforcement Learning with Offline Datasets [84.94748183816547]
We show that our method, advantage weighted actor critic (AWAC), enables rapid learning of skills with a combination of prior demonstration data and online experience.
Our results show that incorporating prior data can reduce the time required to learn a range of robotic skills to practical time-scales.
arXiv Detail & Related papers (2020-06-16T17:54:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.