Large Language Models for Computer-Aided Design: A Survey
- URL: http://arxiv.org/abs/2505.08137v1
- Date: Tue, 13 May 2025 00:19:04 GMT
- Title: Large Language Models for Computer-Aided Design: A Survey
- Authors: Licheng Zhang, Bach Le, Naveed Akhtar, Siew-Kei Lam, Tuan Ngo,
- Abstract summary: Large Language Models (LLMs) have seen rapid advancements in recent years.<n>As complexity of modern designs increases, the potential for LLMs to enhance and streamline Computer-Aided Design (CAD) presents an exciting frontier.<n>This article presents the first systematic survey exploring the intersection of LLMs and CAD.
- Score: 33.35688559256746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have seen rapid advancements in recent years, with models like ChatGPT and DeepSeek, showcasing their remarkable capabilities across diverse domains. While substantial research has been conducted on LLMs in various fields, a comprehensive review focusing on their integration with Computer-Aided Design (CAD) remains notably absent. CAD is the industry standard for 3D modeling and plays a vital role in the design and development of products across different industries. As the complexity of modern designs increases, the potential for LLMs to enhance and streamline CAD workflows presents an exciting frontier. This article presents the first systematic survey exploring the intersection of LLMs and CAD. We begin by outlining the industrial significance of CAD, highlighting the need for AI-driven innovation. Next, we provide a detailed overview of the foundation of LLMs. We also examine both closed-source LLMs as well as publicly available models. The core of this review focuses on the various applications of LLMs in CAD, providing a taxonomy of six key areas where these models are making considerable impact. Finally, we propose several promising future directions for further advancements, which offer vast opportunities for innovation and are poised to shape the future of CAD technology. Github: https://github.com/lichengzhanguom/LLMs-CAD-Survey-Taxonomy
Related papers
- CReFT-CAD: Boosting Orthographic Projection Reasoning for CAD via Reinforcement Fine-Tuning [50.867869718716555]
We introduce CReFT-CAD, a two-stage fine-tuning paradigm that first employs a curriculum-driven reinforcement learning stage with difficulty-aware rewards to build reasoning ability steadily.<n>We release TriView2CAD, the first large-scale, open-source benchmark for orthographic projection reasoning.
arXiv Detail & Related papers (2025-05-31T13:52:56Z) - cadrille: Multi-modal CAD Reconstruction with Online Reinforcement Learning [41.24641565316878]
We propose a multi-modal CAD reconstruction model that simultaneously processes all three input modalities.<n>Inspired by large language model (LLM) training paradigms, we adopt a two-stage pipeline: supervised fine-tuning (SFT) on large-scale procedurally generated data, followed by reinforcement learning (RL) fine-tuning using online feedback, obtained programatically.<n>In the DeepCAD benchmark, our SFT model outperforms existing single-modal approaches in all three input modalities simultaneously.
arXiv Detail & Related papers (2025-05-28T22:32:31Z) - Seek-CAD: A Self-refined Generative Modeling for 3D Parametric CAD Using Local Inference via DeepSeek [19.441404313543227]
This study is the first investigation to incorporate both visual and Chain-of-Thought (CoT) feedback within the self-refinement mechanism for generating CAD models.<n>We present an innovative 3D CAD model dataset structured around the SSR (Sketch, Sketch-based feature, and Refinements) triple design paradigm.
arXiv Detail & Related papers (2025-05-23T10:11:19Z) - BlenderLLM: Training Large Language Models for Computer-Aided Design with Self-improvement [45.19076032719869]
We present BlenderLLM, a framework for training Large Language Models (LLMs) in Computer-Aided Design (CAD)<n>Our results reveal that existing models demonstrate significant limitations in generating accurate CAD scripts.<n>Through minimal instruction-based fine-tuning and iterative self-improvement, BlenderLLM significantly surpasses these models in both functionality and accuracy of CAD script generation.
arXiv Detail & Related papers (2024-12-16T14:34:02Z) - CAD-MLLM: Unifying Multimodality-Conditioned CAD Generation With MLLM [39.113795259823476]
We introduce the CAD-MLLM, the first system capable of generating parametric CAD models conditioned on the multimodal input.<n>We use advanced large language models (LLMs) to align the feature space across diverse multi-modalities data and CAD models' vectorized representations.<n>Our resulting dataset, named Omni-CAD, is the first multimodal CAD dataset that contains textual description, multi-view images, points, and command sequence for each CAD model.
arXiv Detail & Related papers (2024-11-07T18:31:08Z) - OpenECAD: An Efficient Visual Language Model for Editable 3D-CAD Design [1.481550828146527]
We fine-tuned pre-trained models to create OpenECAD models (0.55B, 0.89B, 2.4B and 3.1B)
OpenECAD models can process images of 3D designs as input and generate highly structured 2D sketches and 3D construction commands.
These outputs can be directly used with existing CAD tools' APIs to generate project files.
arXiv Detail & Related papers (2024-06-14T10:47:52Z) - LLMs Meet Multimodal Generation and Editing: A Survey [89.76691959033323]
This survey elaborates on multimodal generation and editing across various domains, comprising image, video, 3D, and audio.
We summarize the notable advancements with milestone works in these fields and categorize these studies into LLM-based and CLIP/T5-based methods.
We dig into tool-augmented multimodal agents that can leverage existing generative models for human-computer interaction.
arXiv Detail & Related papers (2024-05-29T17:59:20Z) - Geometric Deep Learning for Computer-Aided Design: A Survey [85.79012726689511]
This survey offers a comprehensive overview of learning-based methods in computer-aided design.
It includes similarity analysis and retrieval, 2D and 3D CAD model synthesis, and CAD generation from point clouds.
It provides a complete list of benchmark datasets and their characteristics, along with open-source codes that have propelled research in this domain.
arXiv Detail & Related papers (2024-02-27T17:11:35Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
Vision-Language Models (VLMs) are advanced models that can tackle more intricate tasks such as image captioning and visual question answering.
Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.
We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible.
arXiv Detail & Related papers (2024-02-20T18:57:34Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot.<n>This paper aims to trace and summarize the recent progress of MLLMs.
arXiv Detail & Related papers (2023-06-23T15:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.