InfoPO: On Mutual Information Maximization for Large Language Model Alignment
- URL: http://arxiv.org/abs/2505.08507v1
- Date: Tue, 13 May 2025 12:37:48 GMT
- Title: InfoPO: On Mutual Information Maximization for Large Language Model Alignment
- Authors: Teng Xiao, Zhen Ge, Sujay Sanghavi, Tian Wang, Julian Katz-Samuels, Marc Versage, Qingjun Cui, Trishul Chilimbi,
- Abstract summary: We study the post-training of large language models with human preference data.<n>We propose a principled preference fine-tuning algorithm called InfoPO.
- Score: 26.692916936162824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the post-training of large language models (LLMs) with human preference data. Recently, direct preference optimization and its variants have shown considerable promise in aligning language models, eliminating the need for reward models and online sampling. Despite these benefits, these methods rely on explicit assumptions about the Bradley-Terry (BT) model, which makes them prone to overfitting and results in suboptimal performance, particularly on reasoning-heavy tasks. To address these challenges, we propose a principled preference fine-tuning algorithm called InfoPO, which effectively and efficiently aligns large language models using preference data. InfoPO eliminates the reliance on the BT model and prevents the likelihood of the chosen response from decreasing. Extensive experiments confirm that InfoPO consistently outperforms established baselines on widely used open benchmarks, particularly in reasoning tasks.
Related papers
- Difficulty-Based Preference Data Selection by DPO Implicit Reward Gap [13.89078939095465]
We introduce a novel difficulty-based data selection strategy for preference datasets, grounded in the DPO implicit reward mechanism.<n>Our approach consistently outperforms five strong baselines across multiple datasets and alignment tasks.
arXiv Detail & Related papers (2025-08-06T07:24:14Z) - A Survey of Direct Preference Optimization [103.59317151002693]
Large Language Models (LLMs) have demonstrated unprecedented generative capabilities.<n>Their alignment with human values remains critical for ensuring helpful and harmless deployments.<n>Direct Preference Optimization (DPO) has recently gained prominence as a streamlined alternative.
arXiv Detail & Related papers (2025-03-12T08:45:15Z) - Beyond Bradley-Terry Models: A General Preference Model for Language Model Alignment [51.14207112118503]
We introduce preference embedding, an approach that embeds responses into a latent space to capture preferences efficiently.<n>We also propose preference score-based General Preference Optimization (GPO), which generalizes reward-based reinforcement learning from human feedback.<n>Our method may enhance the alignment of foundation models with nuanced human values.
arXiv Detail & Related papers (2024-10-03T04:22:55Z) - BiasDPO: Mitigating Bias in Language Models through Direct Preference Optimization [0.0]
Large Language Models (LLMs) have become pivotal in advancing natural language processing, yet their potential to perpetuate biases poses significant concerns.
This paper introduces a new framework employing Direct Preference Optimization (DPO) to mitigate gender, racial, and religious biases in English text.
By developing a loss function that favors less biased over biased completions, our approach cultivates a preference for respectful and non-discriminatory language.
arXiv Detail & Related papers (2024-07-18T22:32:20Z) - Spread Preference Annotation: Direct Preference Judgment for Efficient LLM Alignment [72.99676237703099]
We propose a new framework that boosts the alignment of large language models with human preferences.<n>Our key idea is leveraging the human prior knowledge within the small (seed) data.<n>We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Optimizing Language Models for Human Preferences is a Causal Inference Problem [41.59906798328058]
We present an initial exploration of language model optimization for human preferences from direct outcome datasets.
We first propose that language model optimization should be viewed as a causal problem to ensure that the model correctly learns the relationship between the text and the outcome.
We extend CPO with doubly robust CPO, which reduces the variance of the surrogate objective while retaining provably strong guarantees on bias.
arXiv Detail & Related papers (2024-02-22T21:36:07Z) - Active Preference Learning for Large Language Models [12.093302163058436]
We develop an active learning strategy for DPO to make better use of preference labels.
We propose a practical acquisition function for prompt/completion pairs based on the predictive entropy of the language model.
We demonstrate how our approach improves both the rate of learning and final performance of fine-tuning on pairwise preference data.
arXiv Detail & Related papers (2024-02-12T23:09:00Z) - Sample Efficient Preference Alignment in LLMs via Active Exploration [63.84454768573154]
We take advantage of the fact that one can often choose contexts at which to obtain human feedback to most efficiently identify a good policy.<n>We propose an active exploration algorithm to efficiently select the data and provide theoretical proof that it has a worst-case regret bound.<n>Our method outperforms the baselines with limited samples of human preferences on several language models and four real-world datasets.
arXiv Detail & Related papers (2023-12-01T00:54:02Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.