OLinear: A Linear Model for Time Series Forecasting in Orthogonally Transformed Domain
- URL: http://arxiv.org/abs/2505.08550v2
- Date: Wed, 14 May 2025 11:00:57 GMT
- Title: OLinear: A Linear Model for Time Series Forecasting in Orthogonally Transformed Domain
- Authors: Wenzhen Yue, Yong Liu, Haoxuan Li, Hao Wang, Xianghua Ying, Ruohao Guo, Bowei Xing, Ji Shi,
- Abstract summary: OLinear is a $mathbfo$rthogonally transformed domain that operates in a $mathbfo$rthogonally transformed domain.<n>We introduce a customized linear layer, $mathbfNormLin$, which employs a normalized weight matrix to capture multivariate dependencies.<n>Experiments on 24 benchmarks and 140 forecasting tasks demonstrate that OLinear consistently achieves state-of-the-art performance with high efficiency.
- Score: 24.24834151329251
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents $\mathbf{OLinear}$, a $\mathbf{linear}$-based multivariate time series forecasting model that operates in an $\mathbf{o}$rthogonally transformed domain. Recent forecasting models typically adopt the temporal forecast (TF) paradigm, which directly encode and decode time series in the time domain. However, the entangled step-wise dependencies in series data can hinder the performance of TF. To address this, some forecasters conduct encoding and decoding in the transformed domain using fixed, dataset-independent bases (e.g., sine and cosine signals in the Fourier transform). In contrast, we utilize $\mathbf{OrthoTrans}$, a data-adaptive transformation based on an orthogonal matrix that diagonalizes the series' temporal Pearson correlation matrix. This approach enables more effective encoding and decoding in the decorrelated feature domain and can serve as a plug-in module to enhance existing forecasters. To enhance the representation learning for multivariate time series, we introduce a customized linear layer, $\mathbf{NormLin}$, which employs a normalized weight matrix to capture multivariate dependencies. Empirically, the NormLin module shows a surprising performance advantage over multi-head self-attention, while requiring nearly half the FLOPs. Extensive experiments on 24 benchmarks and 140 forecasting tasks demonstrate that OLinear consistently achieves state-of-the-art performance with high efficiency. Notably, as a plug-in replacement for self-attention, the NormLin module consistently enhances Transformer-based forecasters. The code and datasets are available at https://anonymous.4open.science/r/OLinear
Related papers
- Sensorformer: Cross-patch attention with global-patch compression is effective for high-dimensional multivariate time series forecasting [12.103678233732584]
We propose a new Transformer, Sensorformer, which first compresses the global patch information and then simultaneously extracts cross-variable and cross-time dependencies from the compressed representations.<n>Sensorformer can effectively capture the correct inter-variable correlations and causal relationships, even in the presence of dynamic causal lags between variables.
arXiv Detail & Related papers (2025-01-06T03:14:47Z) - Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a causal Transformer for unified time series forecasting.<n>Based on large-scale pre-training, Timer-XL achieves state-of-the-art zero-shot performance.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - Optimal Matrix-Mimetic Tensor Algebras via Variable Projection [0.0]
Matrix mimeticity arises from interpreting tensors as operators that can be multiplied, factorized, and analyzed analogous to matrices.
We learn optimal linear mappings and corresponding tensor representations without relying on prior knowledge of the data.
We provide original theory of uniqueness of the transformation and convergence analysis of our variable-projection-based algorithm.
arXiv Detail & Related papers (2024-06-11T04:52:23Z) - MultiResFormer: Transformer with Adaptive Multi-Resolution Modeling for
General Time Series Forecasting [18.990322695844675]
Transformer-based models have greatly pushed the boundaries of time series forecasting recently.
Existing methods typically encode time series data into $textitpatches$ using one or a fixed set of patch lengths.
We propose MultiResFormer, which dynamically models temporal variations by adaptively choosing optimal patch lengths.
arXiv Detail & Related papers (2023-11-30T18:24:33Z) - iTransformer: Inverted Transformers Are Effective for Time Series Forecasting [62.40166958002558]
We propose iTransformer, which simply applies the attention and feed-forward network on the inverted dimensions.
The iTransformer model achieves state-of-the-art on challenging real-world datasets.
arXiv Detail & Related papers (2023-10-10T13:44:09Z) - Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs [50.25683648762602]
We introduce Koopman VAE, a new generative framework that is based on a novel design for the model prior.
Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map.
KoVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks.
arXiv Detail & Related papers (2023-10-04T07:14:43Z) - Hybrid Model-based / Data-driven Graph Transform for Image Coding [54.31406300524195]
We present a hybrid model-based / data-driven approach to encode an intra-prediction residual block.
The first $K$ eigenvectors of a transform matrix are derived from a statistical model, e.g., the asymmetric discrete sine transform (ADST) for stability.
Using WebP as a baseline image, experimental results show that our hybrid graph transform achieved better energy compaction than default discrete cosine transform (DCT) and better stability than KLT.
arXiv Detail & Related papers (2022-03-02T15:36:44Z) - Sketching as a Tool for Understanding and Accelerating Self-attention
for Long Sequences [52.6022911513076]
Transformer-based models are not efficient in processing long sequences due to the quadratic space and time complexity of the self-attention modules.
We propose Linformer and Informer to reduce the quadratic complexity to linear (modulo logarithmic factors) via low-dimensional projection and row selection.
Based on the theoretical analysis, we propose Skeinformer to accelerate self-attention and further improve the accuracy of matrix approximation to self-attention.
arXiv Detail & Related papers (2021-12-10T06:58:05Z) - Warped Dynamic Linear Models for Time Series of Counts [1.3515965758160216]
We introduce a novel semiparametric methodology for count time series by warping a Gaussian DLM.
We leverage these results to produce customized and efficient algorithms for inference and forecasting.
arXiv Detail & Related papers (2021-10-27T21:44:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.