Cost Function Estimation Using Inverse Reinforcement Learning with Minimal Observations
- URL: http://arxiv.org/abs/2505.08619v1
- Date: Tue, 13 May 2025 14:38:25 GMT
- Title: Cost Function Estimation Using Inverse Reinforcement Learning with Minimal Observations
- Authors: Sarmad Mehrdad, Avadesh Meduri, Ludovic Righetti,
- Abstract summary: We present an iterative inverse reinforcement learning algorithm to infer optimal cost functions in continuous spaces.<n>Our algorithm can individually tune the effectiveness of each observation for the partition function and does not need a large sample set.
- Score: 13.08316935335288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an iterative inverse reinforcement learning algorithm to infer optimal cost functions in continuous spaces. Based on a popular maximum entropy criteria, our approach iteratively finds a weight improvement step and proposes a method to find an appropriate step size that ensures learned cost function features remain similar to the demonstrated trajectory features. In contrast to similar approaches, our algorithm can individually tune the effectiveness of each observation for the partition function and does not need a large sample set, enabling faster learning. We generate sample trajectories by solving an optimal control problem instead of random sampling, leading to more informative trajectories. The performance of our method is compared to two state of the art algorithms to demonstrate its benefits in several simulated environments.
Related papers
- Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Provably Efficient Representation Learning with Tractable Planning in
Low-Rank POMDP [81.00800920928621]
We study representation learning in partially observable Markov Decision Processes (POMDPs)
We first present an algorithm for decodable POMDPs that combines maximum likelihood estimation (MLE) and optimism in the face of uncertainty (OFU)
We then show how to adapt this algorithm to also work in the broader class of $gamma$-observable POMDPs.
arXiv Detail & Related papers (2023-06-21T16:04:03Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Unsupervised feature selection via self-paced learning and low-redundant
regularization [6.083524716031565]
An unsupervised feature selection is proposed by integrating the framework of self-paced learning and subspace learning.
The convergence of the method is proved theoretically and experimentally.
The experimental results show that the proposed method can improve the performance of clustering methods and outperform other compared algorithms.
arXiv Detail & Related papers (2021-12-14T08:28:19Z) - Adaptive Sampling Quasi-Newton Methods for Zeroth-Order Stochastic
Optimization [1.7513645771137178]
We consider unconstrained optimization problems with no available gradient information.
We propose an adaptive sampling quasi-Newton method where we estimate the gradients of a simulation function using finite differences within a common random number framework.
We develop modified versions of a norm test and an inner product quasi-Newton test to control the sample sizes used in the approximations and provide global convergence results to the neighborhood of the optimal solution.
arXiv Detail & Related papers (2021-09-24T21:49:25Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Minibatch and Momentum Model-based Methods for Stochastic Non-smooth
Non-convex Optimization [3.4809730725241597]
We make two important extensions to model-based methods.
First, we propose a new minibatch which takes a set of samples to approximate the model function in each iteration.
Second, by the success of momentum techniques we propose a new convex-based model.
arXiv Detail & Related papers (2021-06-06T05:31:57Z) - Asymptotic study of stochastic adaptive algorithm in non-convex
landscape [2.1320960069210484]
This paper studies some assumption properties of adaptive algorithms widely used in optimization and machine learning.
Among them Adagrad and Rmsprop, which are involved in most of the blackbox deep learning algorithms.
arXiv Detail & Related papers (2020-12-10T12:54:45Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
Our algorithm generates a sequence of finite-dimensional random subspaces of functional space spanned by a set of draws from the experimenter's Gaussian Process.
Standard Bayesian optimisation is applied on each subspace, and the best solution found used as a starting point (origin) for the next subspace.
We test our algorithm in simulated and real-world experiments, namely blind function matching, finding the optimal precipitation-strengthening function for an aluminium alloy, and learning rate schedule optimisation for deep networks.
arXiv Detail & Related papers (2020-09-08T06:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.