The Geometry of Meaning: Perfect Spacetime Representations of Hierarchical Structures
- URL: http://arxiv.org/abs/2505.08795v1
- Date: Wed, 07 May 2025 20:41:06 GMT
- Title: The Geometry of Meaning: Perfect Spacetime Representations of Hierarchical Structures
- Authors: Andres Anabalon, Hugo Garces, Julio Oliva, Jose Cifuentes,
- Abstract summary: We show that there is a fast algorithm that embeds hierarchical structures in three-dimensional Minkowski spacetime.<n>Our results seem to indicate that all discrete data has a perfect geometrical representation that is three-dimensional.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that there is a fast algorithm that embeds hierarchical structures in three-dimensional Minkowski spacetime. The correlation of data ends up purely encoded in the causal structure. Our model relies solely on oriented token pairs -- local hierarchical signals -- with no access to global symbolic structure. We apply our method to the corpus of \textit{WordNet}. We provide a perfect embedding of the mammal sub-tree including ambiguities (more than one hierarchy per node) in such a way that the hierarchical structures get completely codified in the geometry and exactly reproduce the ground-truth. We extend this to a perfect embedding of the maximal unambiguous subset of the \textit{WordNet} with 82{,}115 noun tokens and a single hierarchy per token. We introduce a novel retrieval mechanism in which causality, not distance, governs hierarchical access. Our results seem to indicate that all discrete data has a perfect geometrical representation that is three-dimensional. The resulting embeddings are nearly conformally invariant, indicating deep connections with general relativity and field theory. These results suggest that concepts, categories, and their interrelations, namely hierarchical meaning itself, is geometric.
Related papers
- Learning Structured Representations with Hyperbolic Embeddings [22.95613852886361]
We propose HypStructure: a Hyperbolic Structured regularization approach to accurately embed the label hierarchy into the learned representations.<n>Experiments on several large-scale vision benchmarks demonstrate the efficacy of HypStructure in reducing distortion.<n>For a better understanding of structured representation, we perform eigenvalue analysis that links the representation geometry to improved Out-of-Distribution (OOD) detection performance.
arXiv Detail & Related papers (2024-12-02T00:56:44Z) - Open-Vocabulary Octree-Graph for 3D Scene Understanding [54.11828083068082]
Octree-Graph is a novel scene representation for open-vocabulary 3D scene understanding.
An adaptive-octree structure is developed that stores semantics and depicts the occupancy of an object adjustably according to its shape.
arXiv Detail & Related papers (2024-11-25T10:14:10Z) - Data-driven Coreference-based Ontology Building [48.995395445597225]
Coreference resolution is traditionally used as a component in individual document understanding.
We take a more global view and explore what can we learn about a domain from the set of all document-level coreference relations.
We release the coreference chains resulting under a creative-commons license, along with the code.
arXiv Detail & Related papers (2024-10-22T14:30:40Z) - The Geometry of Concepts: Sparse Autoencoder Feature Structure [10.95343312207608]
We find that the concept universe has interesting structure at three levels.<n>The "brain" intermediate-scale structure has significant spatial modularity.<n>The "galaxy" scale large-scale structure of the feature point cloud is not isotropic, but instead has a power law of eigenvalues with steepest slope in middle layers.
arXiv Detail & Related papers (2024-10-10T17:58:47Z) - Integrating Hierarchical Semantic into Iterative Generation Model for Entailment Tree Explanation [7.5496857647335585]
We propose an architecture of integrating the Hierarchical Semantics of sentences under the framework of Controller-Generator (HiSCG) to explain answers.
The proposed method achieves comparable performance on all three settings of the EntailmentBank dataset.
arXiv Detail & Related papers (2024-09-26T11:46:58Z) - Data Topology-Dependent Upper Bounds of Neural Network Widths [52.58441144171022]
We first show that a three-layer neural network can be designed to approximate an indicator function over a compact set.
This is then extended to a simplicial complex, deriving width upper bounds based on its topological structure.
We prove the universal approximation property of three-layer ReLU networks using our topological approach.
arXiv Detail & Related papers (2023-05-25T14:17:15Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
In this paper we offer a new perspective on the well established agglomerative clustering algorithm, focusing on recovery of hierarchical structure.
We recommend a simple variant of the standard algorithm, in which clusters are merged by maximum average dot product and not, for example, by minimum distance or within-cluster variance.
We demonstrate that the tree output by this algorithm provides a bona fide estimate of generative hierarchical structure in data, under a generic probabilistic graphical model.
arXiv Detail & Related papers (2023-05-24T11:05:12Z) - Hierarchies over Vector Space: Orienting Word and Graph Embeddings [14.367560758244624]
We present a data structure that captures inherent hierarchical properties from an unordered flat embedding space.
Inspired by the notion of textitdistributional generality, our algorithm constructs an arborescence (a directed rooted tree) by inserting nodes in descending order of entity power.
We evaluate the performance of the resulting tree structures on three tasks: hypernym relation discovery, least-common-ancestor (LCA) discovery among words, and Wikipedia page link recovery.
arXiv Detail & Related papers (2022-11-02T18:54:44Z) - Geometry Interaction Knowledge Graph Embeddings [153.69745042757066]
We propose Geometry Interaction knowledge graph Embeddings (GIE), which learns spatial structures interactively between the Euclidean, hyperbolic and hyperspherical spaces.
Our proposed GIE can capture a richer set of relational information, model key inference patterns, and enable expressive semantic matching across entities.
arXiv Detail & Related papers (2022-06-24T08:33:43Z) - Modeling Heterogeneous Hierarchies with Relation-specific Hyperbolic
Cones [64.75766944882389]
We present ConE (Cone Embedding), a KG embedding model that is able to simultaneously model multiple hierarchical as well as non-hierarchical relations in a knowledge graph.
In particular, ConE uses cone containment constraints in different subspaces of the hyperbolic embedding space to capture multiple heterogeneous hierarchies.
Our approach yields new state-of-the-art Hits@1 of 45.3% on WN18RR and 16.1% on DDB14 (0.231 MRR)
arXiv Detail & Related papers (2021-10-28T07:16:08Z) - Exploring the Hierarchy in Relation Labels for Scene Graph Generation [75.88758055269948]
The proposed method can improve several state-of-the-art baselines by a large margin (up to $33%$ relative gain) in terms of Recall@50.
Experiments show that the proposed simple yet effective method can improve several state-of-the-art baselines by a large margin.
arXiv Detail & Related papers (2020-09-12T17:36:53Z) - node2coords: Graph Representation Learning with Wasserstein Barycenters [59.07120857271367]
We introduce node2coords, a representation learning algorithm for graphs.
It learns simultaneously a low-dimensional space and coordinates for the nodes in that space.
Experimental results demonstrate that the representations learned with node2coords are interpretable.
arXiv Detail & Related papers (2020-07-31T13:14:25Z) - Equivariant Maps for Hierarchical Structures [17.931059591895984]
We show that symmetry of a hierarchical structure is the "wreath product" of symmetries of the building blocks.
By voxelizing the point cloud, we impose a hierarchy of translation and permutation symmetries on the data.
We report state-of-the-art on Semantic3D, S3DIS, and vKITTI, that include some of the largest real-world point-cloud benchmarks.
arXiv Detail & Related papers (2020-06-05T18:42:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.