Ultrasound Report Generation with Multimodal Large Language Models for Standardized Texts
- URL: http://arxiv.org/abs/2505.08838v2
- Date: Mon, 19 May 2025 04:30:42 GMT
- Title: Ultrasound Report Generation with Multimodal Large Language Models for Standardized Texts
- Authors: Peixuan Ge, Tongkun Su, Faqin Lv, Baoliang Zhao, Peng Zhang, Chi Hong Wong, Liang Yao, Yu Sun, Zenan Wang, Pak Kin Wong, Ying Hu,
- Abstract summary: We propose a unified framework for multi-organ and multilingual US report generation.<n>Method achieves consistent and clinically accurate text generation across organ sites and languages.
- Score: 15.349894506969074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ultrasound (US) report generation is a challenging task due to the variability of US images, operator dependence, and the need for standardized text. Unlike X-ray and CT, US imaging lacks consistent datasets, making automation difficult. In this study, we propose a unified framework for multi-organ and multilingual US report generation, integrating fragment-based multilingual training and leveraging the standardized nature of US reports. By aligning modular text fragments with diverse imaging data and curating a bilingual English-Chinese dataset, the method achieves consistent and clinically accurate text generation across organ sites and languages. Fine-tuning with selective unfreezing of the vision transformer (ViT) further improves text-image alignment. Compared to the previous state-of-the-art KMVE method, our approach achieves relative gains of about 2\% in BLEU scores, approximately 3\% in ROUGE-L, and about 15\% in CIDEr, while significantly reducing errors such as missing or incorrect content. By unifying multi-organ and multi-language report generation into a single, scalable framework, this work demonstrates strong potential for real-world clinical workflows.
Related papers
- A Benchmark for Multi-Lingual Vision-Language Learning in Remote Sensing Image Captioning [27.350370419751385]
Remote Sensing Image Captioning (RSIC) is a cross-modal field bridging vision and language, aimed at automatically generating natural language descriptions of features and scenes in remote sensing imagery.<n>Two critical challenges persist: the scarcity of non-English descriptive datasets and the lack of multilingual capability evaluation for models.<n>This paper introduces and analyzes BRSIC, a comprehensive bilingual dataset that enriches three established English RSIC datasets with Chinese descriptions, encompassing 13,634 images paired with 68,170 bilingual captions.
arXiv Detail & Related papers (2025-03-06T16:31:34Z) - Exploring Better Text Image Translation with Multimodal Codebook [39.12169843196739]
Text image translation (TIT) aims to translate the source texts embedded in the image to target translations.
In this work, we first annotate a Chinese-English TIT dataset named OCRMT30K, providing convenience for subsequent studies.
Then, we propose a TIT model with a multimodal codebook, which is able to associate the image with relevant texts.
We present a multi-stage training framework involving text machine translation, image-text alignment, and TIT tasks, which fully exploits additional bilingual texts.
arXiv Detail & Related papers (2023-05-27T08:41:18Z) - Scene Graph as Pivoting: Inference-time Image-free Unsupervised
Multimodal Machine Translation with Visual Scene Hallucination [88.74459704391214]
In this work, we investigate a more realistic unsupervised multimodal machine translation (UMMT) setup.
We represent the input images and texts with the visual and language scene graphs (SG), where such fine-grained vision-language features ensure a holistic understanding of the semantics.
Several SG-pivoting based learning objectives are introduced for unsupervised translation training.
Our method outperforms the best-performing baseline by significant BLEU scores on the task and setup.
arXiv Detail & Related papers (2023-05-20T18:17:20Z) - RC3: Regularized Contrastive Cross-lingual Cross-modal Pre-training [84.23022072347821]
We propose a regularized cross-lingual visio-textual contrastive learning objective that constrains the representation proximity of weakly-aligned visio-textual inputs.
Experiments on 5 downstream multi-modal tasks across 6 languages demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-05-13T14:41:05Z) - Augmented Transformers with Adaptive n-grams Embedding for Multilingual
Scene Text Recognition [10.130342722193204]
This paper proposes an augmented transformer architecture with n-grams embedding and cross-language rectification (TANGER)
TANGER consists of a primary transformer with single patch embeddings of visual images, and a supplementary transformer with adaptive n-grams embeddings.
Cross-language rectification is achieved with a loss function that takes into account both language identification and contextual coherence scoring.
arXiv Detail & Related papers (2023-02-28T02:37:30Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z) - Beyond Triplet: Leveraging the Most Data for Multimodal Machine
Translation [53.342921374639346]
Multimodal machine translation aims to improve translation quality by incorporating information from other modalities, such as vision.
Previous MMT systems mainly focus on better access and use of visual information and tend to validate their methods on image-related datasets.
This paper establishes new methods and new datasets for MMT.
arXiv Detail & Related papers (2022-12-20T15:02:38Z) - ZmBART: An Unsupervised Cross-lingual Transfer Framework for Language
Generation [4.874780144224057]
Cross-lingual transfer for natural language generation is relatively understudied.
We consider four NLG tasks (text summarization, question generation, news headline generation, and distractor generation) and three syntactically diverse languages.
We propose an unsupervised cross-lingual language generation framework (called ZmBART) that does not use any parallel or pseudo-parallel/back-translated data.
arXiv Detail & Related papers (2021-06-03T05:08:01Z) - UC2: Universal Cross-lingual Cross-modal Vision-and-Language
Pre-training [52.852163987208826]
UC2 is the first machine translation-augmented framework for cross-lingual cross-modal representation learning.
We propose two novel pre-training tasks, namely Masked Region-to-Token Modeling (MRTM) and Visual Translation Language Modeling (VTLM)
Our proposed framework achieves new state-of-the-art on diverse non-English benchmarks while maintaining comparable performance to monolingual pre-trained models on English tasks.
arXiv Detail & Related papers (2021-04-01T08:30:53Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
We plug a cross-attention module into the Transformer encoder to explicitly build the interdependence between languages.
It can effectively avoid the degeneration of predicting masked words only conditioned on the context in its own language.
The proposed cross-lingual model delivers new state-of-the-art results on various cross-lingual understanding tasks of the XTREME benchmark.
arXiv Detail & Related papers (2020-10-30T03:41:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.