The Larger the Merrier? Efficient Large AI Model Inference in Wireless Edge Networks
- URL: http://arxiv.org/abs/2505.09214v1
- Date: Wed, 14 May 2025 08:18:55 GMT
- Title: The Larger the Merrier? Efficient Large AI Model Inference in Wireless Edge Networks
- Authors: Zhonghao Lyu, Ming Xiao, Jie Xu, Mikael Skoglund, Marco Di Renzo,
- Abstract summary: The demand for large computation model (LAIM) services is driving a paradigm shift from traditional cloud-based inference to edge-based inference for low-latency, privacy-preserving applications.<n>In this paper, we investigate the LAIM-inference scheme, where a pre-trained LAIM is pruned and partitioned into on-device and on-server sub-models for deployment.
- Score: 56.37880529653111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing demand for large artificial intelligence model (LAIM) services is driving a paradigm shift from traditional cloud-based inference to edge-based inference for low-latency, privacy-preserving applications. In particular, edge-device co-inference, which partitions LAIMs between edge devices and servers, has emerged as a promising strategy for resource-efficient LAIM execution in wireless networks. In this paper, we investigate a pruning-aware LAIM co-inference scheme, where a pre-trained LAIM is pruned and partitioned into on-device and on-server sub-models for deployment. For analysis, we first prove that the LAIM output distortion is upper bounded by its parameter distortion. Then, we derive a lower bound on parameter distortion via rate-distortion theory, analytically capturing the relationship between pruning ratio and co-inference performance. Next, based on the analytical results, we formulate an LAIM co-inference distortion bound minimization problem by jointly optimizing the pruning ratio, transmit power, and computation frequency under system latency, energy, and available resource constraints. Moreover, we propose an efficient algorithm to tackle the considered highly non-convex problem. Finally, extensive simulations demonstrate the effectiveness of the proposed design. In particular, model parameter distortion is shown to provide a reliable bound on output distortion. Also, the proposed joint pruning ratio and resource management design achieves superior performance in balancing trade-offs among inference performance, system latency, and energy consumption compared with benchmark schemes, such as fully on-device and on-server inference. Moreover, the split point is shown to play a critical role in system performance optimization under heterogeneous and resource-limited edge environments.
Related papers
- Efficient Split Federated Learning for Large Language Models over Communication Networks [45.02252893286613]
Fine-tuning pre-trained large language models (LLMs) in a distributed manner poses significant challenges on resource-constrained edge networks.<n>We propose SflLLM, a novel framework that integrates split federated learning with parameter-efficient fine-tuning techniques.<n>By leveraging model splitting and low-rank adaptation (LoRA), SflLLM reduces the computational burden on edge devices.
arXiv Detail & Related papers (2025-04-20T16:16:54Z) - Communication-Efficient Federated Learning by Quantized Variance Reduction for Heterogeneous Wireless Edge Networks [55.467288506826755]
Federated learning (FL) has been recognized as a viable solution for local-privacy-aware collaborative model training in wireless edge networks.<n>Most existing communication-efficient FL algorithms fail to reduce the significant inter-device variance.<n>We propose a novel communication-efficient FL algorithm, named FedQVR, which relies on a sophisticated variance-reduced scheme.
arXiv Detail & Related papers (2025-01-20T04:26:21Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Heterogeneity-Aware Resource Allocation and Topology Design for Hierarchical Federated Edge Learning [9.900317349372383]
Federated Learning (FL) provides a privacy-preserving framework for training machine learning models on mobile edge devices.
Traditional FL algorithms, e.g., FedAvg, impose a heavy communication workload on these devices.
We propose a two-tier HFEL system, where edge devices are connected to edge servers and edge servers are interconnected through peer-to-peer (P2P) edge backhauls.
Our goal is to enhance the training efficiency of the HFEL system through strategic resource allocation and topology design.
arXiv Detail & Related papers (2024-09-29T01:48:04Z) - Resource Management for Low-latency Cooperative Fine-tuning of Foundation Models at the Network Edge [35.40849522296486]
Large-scale foundation models (FoMos) can perform human-like intelligence.
FoMos need to be adapted to specialized downstream tasks through fine-tuning techniques.
We advocate multi-device cooperation within the device-edge cooperative fine-tuning paradigm.
arXiv Detail & Related papers (2024-07-13T12:47:14Z) - High Efficiency Inference Accelerating Algorithm for NOMA-based Mobile
Edge Computing [23.88527790721402]
Splitting the inference model between device, edge server, and cloud can improve the performance of EI greatly.
NOMA, which is the key supporting technologies of B5G/6G, can achieve massive connections and high spectrum efficiency.
We propose the effective communication and computing resource allocation algorithm to accelerate the model inference at edge.
arXiv Detail & Related papers (2023-12-26T02:05:52Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Gradient Sparsification for Efficient Wireless Federated Learning with
Differential Privacy [25.763777765222358]
Federated learning (FL) enables distributed clients to collaboratively train a machine learning model without sharing raw data with each other.
As the model size grows, the training latency due to limited transmission bandwidth and private information degrades while using differential privacy (DP) protection.
We propose sparsification empowered FL framework wireless channels, in over to improve training efficiency without sacrificing convergence performance.
arXiv Detail & Related papers (2023-04-09T05:21:15Z) - Design and Prototyping Distributed CNN Inference Acceleration in Edge
Computing [85.74517957717363]
HALP accelerates inference by designing a seamless collaboration among edge devices (EDs) in Edge Computing.
Experiments show that the distributed inference HALP achieves 1.7x inference acceleration for VGG-16.
It is shown that the model selection with distributed inference HALP can significantly improve service reliability.
arXiv Detail & Related papers (2022-11-24T19:48:30Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
partitioned edge learning (PARTEL) implements parameter-server training, a well known distributed learning method, in wireless network.
We consider the case of deep neural network (DNN) models which can be trained using PARTEL by introducing some auxiliary variables.
arXiv Detail & Related papers (2020-10-08T15:27:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.