Scent of Knowledge: Optimizing Search-Enhanced Reasoning with Information Foraging
- URL: http://arxiv.org/abs/2505.09316v1
- Date: Wed, 14 May 2025 12:13:38 GMT
- Title: Scent of Knowledge: Optimizing Search-Enhanced Reasoning with Information Foraging
- Authors: Hongjin Qian, Zheng Liu,
- Abstract summary: InForage is a reinforcement learning framework that formalizes retrieval-augmented reasoning as a dynamic information-seeking process.<n>We construct a human-guided dataset capturing iterative search and reasoning trajectories for complex, real-world web tasks.<n>These results highlight InForage's effectiveness in building robust, adaptive, and efficient reasoning agents.
- Score: 7.047640531842663
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Augmenting large language models (LLMs) with external retrieval has become a standard method to address their inherent knowledge cutoff limitations. However, traditional retrieval-augmented generation methods employ static, pre-inference retrieval strategies, making them inadequate for complex tasks involving ambiguous, multi-step, or evolving information needs. Recent advances in test-time scaling techniques have demonstrated significant potential in enabling LLMs to dynamically interact with external tools, motivating the shift toward adaptive inference-time retrieval. Inspired by Information Foraging Theory (IFT), we propose InForage, a reinforcement learning framework that formalizes retrieval-augmented reasoning as a dynamic information-seeking process. Unlike existing approaches, InForage explicitly rewards intermediate retrieval quality, encouraging LLMs to iteratively gather and integrate information through adaptive search behaviors. To facilitate training, we construct a human-guided dataset capturing iterative search and reasoning trajectories for complex, real-world web tasks. Extensive evaluations across general question answering, multi-hop reasoning tasks, and a newly developed real-time web QA dataset demonstrate InForage's superior performance over baseline methods. These results highlight InForage's effectiveness in building robust, adaptive, and efficient reasoning agents.
Related papers
- DynaSearcher: Dynamic Knowledge Graph Augmented Search Agent via Multi-Reward Reinforcement Learning [4.817888539036794]
DynaSearcher is an innovative search agent enhanced by dynamic knowledge graphs and multi-reward reinforcement learning (RL)<n>We employ a multi-reward RL framework for fine-grained control over training objectives such as retrieval accuracy, efficiency, and response quality.<n> Experimental results demonstrate that our approach achieves state-of-the-art answer accuracy on six multi-hop question answering datasets.
arXiv Detail & Related papers (2025-07-23T09:58:31Z) - From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents [96.65646344634524]
Large Language Models (LLMs), endowed with reasoning and agentic capabilities, are ushering in a new paradigm termed Agentic Deep Research.<n>We trace the evolution from static web search to interactive, agent-based systems that plan, explore, and learn.<n>We demonstrate that Agentic Deep Research not only significantly outperforms existing approaches, but is also poised to become the dominant paradigm for future information seeking.
arXiv Detail & Related papers (2025-06-23T17:27:19Z) - MaskSearch: A Universal Pre-Training Framework to Enhance Agentic Search Capability [106.35604230971396]
Recent advancements in Agent techniques enable Large Language Models (LLMs) to autonomously utilize tools for retrieval, planning, and reasoning.<n>To further enhance the universal search capability of agents, we propose a novel pre-training framework, MaskSearch.<n>In the pre-training stage, we introduce the Retrieval Augmented Mask Prediction (RAMP) task, where the model learns to leverage search tools to fill masked spans.<n>After that, the model is trained on downstream tasks to achieve further improvement.
arXiv Detail & Related papers (2025-05-26T17:58:50Z) - Iterative Self-Incentivization Empowers Large Language Models as Agentic Searchers [74.17516978246152]
Large language models (LLMs) have been widely integrated into information retrieval to advance traditional techniques.<n>We propose EXSEARCH, an agentic search framework, where the LLM learns to retrieve useful information as the reasoning unfolds.<n>Experiments on four knowledge-intensive benchmarks show that EXSEARCH substantially outperforms baselines.
arXiv Detail & Related papers (2025-05-26T15:27:55Z) - InfoDeepSeek: Benchmarking Agentic Information Seeking for Retrieval-Augmented Generation [63.55258191625131]
InfoDeepSeek is a new benchmark for assessing agentic information seeking in real-world, dynamic web environments.<n>We propose a systematic methodology for constructing challenging queries satisfying the criteria of determinacy, difficulty, and diversity.<n>We develop the first evaluation framework tailored to dynamic agentic information seeking, including fine-grained metrics about the accuracy, utility, and compactness of information seeking outcomes.
arXiv Detail & Related papers (2025-05-21T14:44:40Z) - SEM: Reinforcement Learning for Search-Efficient Large Language Models [26.075903427834838]
Large Language Models (LLMs) have demonstrated their capabilities not only in reasoning but also in invoking external tools.<n>Existing reinforcement learning approaches often lead to redundant search behaviors, resulting in inefficiencies and over-cost.<n>We propose SEM, a novel post-training reinforcement learning framework that explicitly trains LLMs to optimize search usage.
arXiv Detail & Related papers (2025-05-12T09:45:40Z) - Lightweight and Direct Document Relevance Optimization for Generative Information Retrieval [49.669503570350166]
Generative information retrieval (GenIR) is a promising neural retrieval paradigm that formulates document retrieval as a document identifier (docid) generation task.<n>Existing GenIR models suffer from token-level misalignment, where models trained to predict the next token often fail to capture document-level relevance effectively.<n>We propose direct document relevance optimization (DDRO), which aligns token-level docid generation with document-level relevance estimation through direct optimization via pairwise ranking.
arXiv Detail & Related papers (2025-04-07T15:27:37Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
Generative retrieval reformulates retrieval as an autoregressive generation task, where large language models generate target documents directly from a query.<n>We systematically investigate training and inference scaling laws in generative retrieval, exploring how model size, training data scale, and inference-time compute jointly influence performance.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - HEISIR: Hierarchical Expansion of Inverted Semantic Indexing for Training-free Retrieval of Conversational Data using LLMs [0.3277163122167434]
This paper introduces HEISIR, a novel framework that enhances semantic understanding in conversational data retrieval.<n>Heisir implements a two-step process: (1) Hierarchical Triplets Formulation and (2) Adjunct Augmentation, creating semantic indices consisting of Subject-Verb-Object-Adjunct (SVOA) quadruplets.<n>Our experimental results demonstrate that HEISIR outperforms fine-tuned models across various embedding types and language models.
arXiv Detail & Related papers (2025-03-06T06:39:25Z) - Towards Adaptive Memory-Based Optimization for Enhanced Retrieval-Augmented Generation [3.294519547931054]
Retrieval-Augmented Generation (RAG) integrates non-parametric knowledge from external knowledge bases into models.<n>Existing RAG methods struggle with open-domain Question Answering (QA) tasks.<n>We propose Adaptive memory-based optimization for enhanced RAG for open-domain QA tasks.
arXiv Detail & Related papers (2025-02-19T04:23:12Z) - DeepNote: Note-Centric Deep Retrieval-Augmented Generation [72.70046559930555]
Retrieval-Augmented Generation (RAG) mitigates factual errors and hallucinations in Large Language Models (LLMs) for question-answering (QA)<n>We develop DeepNote, an adaptive RAG framework that achieves in-depth and robust exploration of knowledge sources through note-centric adaptive retrieval.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - WeKnow-RAG: An Adaptive Approach for Retrieval-Augmented Generation Integrating Web Search and Knowledge Graphs [10.380692079063467]
We propose WeKnow-RAG, which integrates Web search and Knowledge Graphs into a "Retrieval-Augmented Generation (RAG)" system.
First, the accuracy and reliability of LLM responses are improved by combining the structured representation of Knowledge Graphs with the flexibility of dense vector retrieval.
Our approach effectively balances the efficiency and accuracy of information retrieval, thus improving the overall retrieval process.
arXiv Detail & Related papers (2024-08-14T15:19:16Z) - Learning to Rank in Generative Retrieval [62.91492903161522]
Generative retrieval aims to generate identifier strings of relevant passages as the retrieval target.
We propose a learning-to-rank framework for generative retrieval, dubbed LTRGR.
This framework only requires an additional learning-to-rank training phase to enhance current generative retrieval systems.
arXiv Detail & Related papers (2023-06-27T05:48:14Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteR allows RMs to expand knowledge in queries using LLM-generated knowledge collections.
InteR achieves overall superior zero-shot retrieval performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-12T11:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.