Efficient Mixed Precision Quantization in Graph Neural Networks
- URL: http://arxiv.org/abs/2505.09361v1
- Date: Wed, 14 May 2025 13:11:39 GMT
- Title: Efficient Mixed Precision Quantization in Graph Neural Networks
- Authors: Samir Moustafa, Nils M. Kriege, Wilfried N. Gansterer,
- Abstract summary: Graph Neural Networks (GNNs) have become essential for handling large-scale graph applications.<n>Mixed precision quantization emerges as a promising solution to enhance the efficiency of GNN architectures.
- Score: 7.161966906570077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have become essential for handling large-scale graph applications. However, the computational demands of GNNs necessitate the development of efficient methods to accelerate inference. Mixed precision quantization emerges as a promising solution to enhance the efficiency of GNN architectures without compromising prediction performance. Compared to conventional deep learning architectures, GNN layers contain a wider set of components that can be quantized, including message passing functions, aggregation functions, update functions, the inputs, learnable parameters, and outputs of these functions. In this paper, we introduce a theorem for efficient quantized message passing to aggregate integer messages. It guarantees numerical equality of the aggregated messages using integer values with respect to those obtained with full (FP32) precision. Based on this theorem, we introduce the Mixed Precision Quantization for GNN (MixQ-GNN) framework, which flexibly selects effective integer bit-widths for all components within GNN layers. Our approach systematically navigates the wide set of possible bit-width combinations, addressing the challenge of optimizing efficiency while aiming at maintaining comparable prediction performance. MixQ-GNN integrates with existing GNN quantization methods, utilizing their graph structure advantages to achieve higher prediction performance. On average, MixQ-GNN achieved reductions in bit operations of 5.5x for node classification and 5.1x for graph classification compared to architectures represented in FP32 precision.
Related papers
- Graph Neural Networks at a Fraction [1.8175282137722093]
This paper introduces Quaternion Message Passing Neural Networks (QMPNNs), a framework that leverages quaternion space to compute node representations.<n>We present a novel perspective on Graph Lottery Tickets, redefining their applicability within the context of GNNs and QMPNNs.
arXiv Detail & Related papers (2025-02-10T03:55:09Z) - Scalable Graph Compressed Convolutions [68.85227170390864]
We propose a differentiable method that applies permutations to calibrate input graphs for Euclidean convolution.
Based on the graph calibration, we propose the Compressed Convolution Network (CoCN) for hierarchical graph representation learning.
arXiv Detail & Related papers (2024-07-26T03:14:13Z) - MAG-GNN: Reinforcement Learning Boosted Graph Neural Network [68.60884768323739]
A particular line of work proposed subgraph GNNs that use subgraph information to improve GNNs' expressivity and achieved great success.
Such effectivity sacrifices the efficiency of GNNs by enumerating all possible subgraphs.
We propose Magnetic Graph Neural Network (MAG-GNN), a reinforcement learning (RL) boosted GNN, to solve the problem.
arXiv Detail & Related papers (2023-10-29T20:32:21Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Low-bit Quantization for Deep Graph Neural Networks with
Smoothness-aware Message Propagation [3.9177379733188715]
We present an end-to-end solution that aims to address these challenges for efficient GNNs in resource constrained environments.
We introduce a quantization based approach for all stages of GNNs, from message passing in training to node classification.
The proposed quantizer learns quantization ranges and reduces the model size with comparable accuracy even under low-bit quantization.
arXiv Detail & Related papers (2023-08-29T00:25:02Z) - Robust Graph Neural Networks using Weighted Graph Laplacian [1.8292714902548342]
Graph neural network (GNN) is vulnerable to noise and adversarial attacks in input data.
We propose a generic framework for robustifying GNN known as Weighted Laplacian GNN (RWL-GNN)
arXiv Detail & Related papers (2022-08-03T05:36:35Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
Graph neural networks (GNNs) have demonstrated great success in representation learning for graph-structured data.
In this paper, we propose a novel framework - i.e., namely Adaptive Kernel Graph Neural Network (AKGNN)
AKGNN learns to adapt to the optimal graph kernel in a unified manner at the first attempt.
Experiments are conducted on acknowledged benchmark datasets and promising results demonstrate the outstanding performance of our proposed AKGNN.
arXiv Detail & Related papers (2021-12-08T20:23:58Z) - VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
Vector Quantization [70.8567058758375]
VQ-GNN is a universal framework to scale up any convolution-based GNNs using Vector Quantization (VQ) without compromising the performance.
Our framework avoids the "neighbor explosion" problem of GNNs using quantized representations combined with a low-rank version of the graph convolution matrix.
arXiv Detail & Related papers (2021-10-27T11:48:50Z) - BlockGNN: Towards Efficient GNN Acceleration Using Block-Circulant
Weight Matrices [9.406007544032848]
Graph Neural Networks (GNNs) are state-of-the-art algorithms for analyzing non-euclidean graph data.
How to inference GNNs in real time has become a challenging problem for some resource-limited edge-computing platforms.
We propose BlockGNN, a software- hardware co-design approach to realize efficient GNN acceleration.
arXiv Detail & Related papers (2021-04-13T14:09:22Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.