ManipBench: Benchmarking Vision-Language Models for Low-Level Robot Manipulation
- URL: http://arxiv.org/abs/2505.09698v1
- Date: Wed, 14 May 2025 18:01:00 GMT
- Title: ManipBench: Benchmarking Vision-Language Models for Low-Level Robot Manipulation
- Authors: Enyu Zhao, Vedant Raval, Hejia Zhang, Jiageng Mao, Zeyu Shangguan, Stefanos Nikolaidis, Yue Wang, Daniel Seita,
- Abstract summary: Vision-Language Models (VLMs) have revolutionized artificial intelligence and robotics due to their commonsense reasoning capabilities.<n>In robotic manipulation, VLMs are used primarily as high-level planners, but recent work has also studied their lower-level reasoning ability.<n>We propose a novel benchmark, ManipBench, to evaluate the low-level robot manipulation reasoning capabilities of VLMs.
- Score: 12.178807390472693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-Language Models (VLMs) have revolutionized artificial intelligence and robotics due to their commonsense reasoning capabilities. In robotic manipulation, VLMs are used primarily as high-level planners, but recent work has also studied their lower-level reasoning ability, which refers to making decisions about precise robot movements. However, the community currently lacks a clear and common benchmark that can evaluate how well VLMs can aid low-level reasoning in robotics. Consequently, we propose a novel benchmark, ManipBench, to evaluate the low-level robot manipulation reasoning capabilities of VLMs across various dimensions, including how well they understand object-object interactions and deformable object manipulation. We extensively test 33 representative VLMs across 10 model families on our benchmark, including variants to test different model sizes. Our evaluation shows that the performance of VLMs significantly varies across tasks, and there is a strong correlation between this performance and trends in our real-world manipulation tasks. It also shows that there remains a significant gap between these models and human-level understanding. See our website at: https://manipbench.github.io.
Related papers
- Reflective Planning: Vision-Language Models for Multi-Stage Long-Horizon Robotic Manipulation [90.00687889213991]
Solving complex long-horizon robotic manipulation problems requires sophisticated high-level planning capabilities.<n>Vision-language models (VLMs) pretrained on Internet data could in principle offer a framework for tackling such problems.<n>In this paper, we introduce a novel test-time framework that enhancesVLMs' physical reasoning capabilities for multi-stage manipulation tasks.
arXiv Detail & Related papers (2025-02-23T20:42:15Z) - HAMSTER: Hierarchical Action Models For Open-World Robot Manipulation [54.03004125910057]
We show that hierarchical vision-language-action models can be more effective in utilizing off-domain data than standard monolithic VLA models.<n>We show that, with the hierarchical design, the high-level VLM can transfer across significant domain gaps between the off-domain finetuning data and real-robot testing scenarios.
arXiv Detail & Related papers (2025-02-08T07:50:22Z) - LLaRA: Supercharging Robot Learning Data for Vision-Language Policy [56.505551117094534]
We introduce LLaRA: Large Language and Robotics Assistant, a framework that formulates robot action policy as visuo-textual conversations.<n>First, we present an automated pipeline to generate conversation-style instruction tuning data for robots from existing behavior cloning datasets.<n>We show that a VLM finetuned with a limited amount of such datasets can produce meaningful action decisions for robotic control.
arXiv Detail & Related papers (2024-06-28T17:59:12Z) - MMRo: Are Multimodal LLMs Eligible as the Brain for In-Home Robotics? [33.573056018368504]
This study introduces the first benchmark for evaluating Multimodal LLM for Robotic (MMRo) benchmark.
We identify four essential capabilities perception, task planning, visual reasoning, and safety measurement that MLLMs must possess to qualify as the robot's central processing unit.
Our findings indicate that no single model excels in all areas, suggesting that current MLLMs are not yet trustworthy enough to serve as the cognitive core for robots.
arXiv Detail & Related papers (2024-06-28T07:09:06Z) - RoboPoint: A Vision-Language Model for Spatial Affordance Prediction for Robotics [46.63773228934993]
We introduce an automatic synthetic data generation pipeline that instruction-tunes vision language models (VLMs) to robotic domains and needs.
Using the pipeline, we train RoboPoint, a VLM that predicts image keypoint affordances given language instructions.
Our experiments demonstrate that RoboPoint outperforms state-of-the-art VLMs by 21.8% in the accuracy of predicting spatial affordance and by 30.5% in the success rate of downstream tasks.
arXiv Detail & Related papers (2024-06-15T19:22:51Z) - MOKA: Open-World Robotic Manipulation through Mark-Based Visual Prompting [97.52388851329667]
We introduce Marking Open-world Keypoint Affordances (MOKA) to solve robotic manipulation tasks specified by free-form language instructions.
Central to our approach is a compact point-based representation of affordance, which bridges the VLM's predictions on observed images and the robot's actions in the physical world.
We evaluate and analyze MOKA's performance on various table-top manipulation tasks including tool use, deformable body manipulation, and object rearrangement.
arXiv Detail & Related papers (2024-03-05T18:08:45Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - Vision-Language Foundation Models as Effective Robot Imitators [48.73027330407576]
We derive a vision-language manipulation framework, dubbed RoboFlamingo, built upon the open-source VLMs, OpenFlamingo.
By exceeding the state-of-the-art performance with a large margin on the tested benchmark, we show RoboFlamingo can be an effective and competitive alternative to adapt VLMs to robot control.
arXiv Detail & Related papers (2023-11-02T16:34:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.