Informed Forecasting: Leveraging Auxiliary Knowledge to Boost LLM Performance on Time Series Forecasting
- URL: http://arxiv.org/abs/2505.10213v2
- Date: Sun, 03 Aug 2025 16:25:58 GMT
- Title: Informed Forecasting: Leveraging Auxiliary Knowledge to Boost LLM Performance on Time Series Forecasting
- Authors: Mohammadmahdi Ghasemloo, Alireza Moradi,
- Abstract summary: A novel cross-domain knowledge transfer framework is proposed to enhance the performance of Large Language Models (LLMs) in time series forecasting.<n>The approach systematically infuses LLMs with structured temporal information to improve their forecasting accuracy.<n>Results show that knowledge-informed forecasting significantly outperforms the uninformed baseline in terms of predictive accuracy and generalization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the widespread adoption of Large Language Models (LLMs), there is a growing need to establish best practices for leveraging their capabilities beyond traditional natural language tasks. In this paper, a novel cross-domain knowledge transfer framework is proposed to enhance the performance of LLMs in time series forecasting -- a task of increasing relevance in fields such as energy systems, finance, and healthcare. The approach systematically infuses LLMs with structured temporal information to improve their forecasting accuracy. This study evaluates the proposed method on a real-world time series dataset and compares it to a naive baseline where the LLM receives no auxiliary information. Results show that knowledge-informed forecasting significantly outperforms the uninformed baseline in terms of predictive accuracy and generalization. These findings highlight the potential of knowledge transfer strategies to bridge the gap between LLMs and domain-specific forecasting tasks.
Related papers
- Efficient Model Selection for Time Series Forecasting via LLMs [52.31535714387368]
We propose to leverage Large Language Models (LLMs) as a lightweight alternative for model selection.<n>Our method eliminates the need for explicit performance matrices by utilizing the inherent knowledge and reasoning capabilities of LLMs.
arXiv Detail & Related papers (2025-04-02T20:33:27Z) - Effective LLM Knowledge Learning via Model Generalization [73.16975077770765]
Large language models (LLMs) are trained on enormous documents that contain extensive world knowledge.<n>It is still not well-understood how knowledge is acquired via autoregressive pre-training.<n>In this paper, we focus on understanding and improving LLM knowledge learning.
arXiv Detail & Related papers (2025-03-05T17:56:20Z) - LLM Post-Training: A Deep Dive into Reasoning Large Language Models [131.10969986056]
Large Language Models (LLMs) have transformed the natural language processing landscape and brought to life diverse applications.<n>Post-training methods enable LLMs to refine their knowledge, improve reasoning, enhance factual accuracy, and align more effectively with user intents and ethical considerations.
arXiv Detail & Related papers (2025-02-28T18:59:54Z) - UAlign: Leveraging Uncertainty Estimations for Factuality Alignment on Large Language Models [41.67393607081513]
Large Language Models (LLMs) often struggle to accurately express the factual knowledge they possess.<n>We propose the UAlign framework, which leverages Uncertainty estimations to represent knowledge boundaries.<n>We show that the proposed UAlign can significantly enhance the LLMs' capacities to confidently answer known questions.
arXiv Detail & Related papers (2024-12-16T14:14:27Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.<n>We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.<n>We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Enhancing Temporal Understanding in LLMs for Semi-structured Tables [50.59009084277447]
We conduct a comprehensive analysis of temporal datasets to pinpoint the specific limitations of large language models (LLMs)
Our investigation leads to enhancements in TempTabQA, a dataset specifically designed for temporal temporal question answering.
We introduce a novel approach, C.L.E.A.R. to strengthen LLM capabilities in this domain.
arXiv Detail & Related papers (2024-07-22T20:13:10Z) - A Comprehensive Evaluation of Large Language Models on Temporal Event Forecasting [45.0261082985087]
We conduct a comprehensive evaluation of Large Language Models (LLMs) for temporal event forecasting.
We find that directly integrating raw texts into the input of LLMs does not enhance zero-shot extrapolation performance.
In contrast, incorporating raw texts in specific complex events and fine-tuning LLMs significantly improves performance.
arXiv Detail & Related papers (2024-07-16T11:58:54Z) - Improve Temporal Awareness of LLMs for Sequential Recommendation [61.723928508200196]
Large language models (LLMs) have demonstrated impressive zero-shot abilities in solving a wide range of general-purpose tasks.
LLMs fall short in recognizing and utilizing temporal information, rendering poor performance in tasks that require an understanding of sequential data.
We propose three prompting strategies to exploit temporal information within historical interactions for LLM-based sequential recommendation.
arXiv Detail & Related papers (2024-05-05T00:21:26Z) - CALF: Aligning LLMs for Time Series Forecasting via Cross-modal Fine-Tuning [59.88924847995279]
We propose a novel Cross-Modal LLM Fine-Tuning (CALF) framework for MTSF.<n>To reduce the distribution discrepancy, we develop the cross-modal match module.<n>CALF establishes state-of-the-art performance for both long-term and short-term forecasting tasks.
arXiv Detail & Related papers (2024-03-12T04:04:38Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
This paper investigates whether the pattern recognition and sequence modeling capabilities of LLMs can be extended to the domain of knowledge tracing.
We compare two approaches to using LLMs for this task, zero-shot prompting and model fine-tuning, with existing, non-LLM approaches to knowledge tracing.
While LLM-based approaches do not achieve state-of-the-art performance, fine-tuned LLMs surpass the performance of naive baseline models and perform on par with standard Bayesian Knowledge Tracing approaches.
arXiv Detail & Related papers (2024-02-29T14:06:34Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
Large Language Model (LLM) inference is rapidly evolving, presenting a unique blend of opportunities and challenges.
Our survey stands out from traditional literature reviews by not only summarizing the current state of research but also by introducing a framework based on roofline model.
This framework identifies the bottlenecks when deploying LLMs on hardware devices and provides a clear understanding of practical problems.
arXiv Detail & Related papers (2024-02-26T07:33:05Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.