Are LLM-generated plain language summaries truly understandable? A large-scale crowdsourced evaluation
- URL: http://arxiv.org/abs/2505.10409v1
- Date: Thu, 15 May 2025 15:31:17 GMT
- Title: Are LLM-generated plain language summaries truly understandable? A large-scale crowdsourced evaluation
- Authors: Yue Guo, Jae Ho Sohn, Gondy Leroy, Trevor Cohen,
- Abstract summary: Plain language summaries (PLSs) are essential for facilitating effective communication between clinicians and patients.<n>Large language models (LLMs) have recently shown promise in automating PLS generation, but their effectiveness in supporting health information comprehension remains unclear.<n>We conducted a large-scale crowdsourced evaluation of LLM-generated PLSs using Amazon Mechanical Turk with 150 participants.<n>Our findings indicate that while LLMs can generate PLSs that appear indistinguishable from human-written ones in subjective evaluations, human-written PLSs lead to significantly better comprehension.
- Score: 7.867257950096845
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Plain language summaries (PLSs) are essential for facilitating effective communication between clinicians and patients by making complex medical information easier for laypeople to understand and act upon. Large language models (LLMs) have recently shown promise in automating PLS generation, but their effectiveness in supporting health information comprehension remains unclear. Prior evaluations have generally relied on automated scores that do not measure understandability directly, or subjective Likert-scale ratings from convenience samples with limited generalizability. To address these gaps, we conducted a large-scale crowdsourced evaluation of LLM-generated PLSs using Amazon Mechanical Turk with 150 participants. We assessed PLS quality through subjective Likert-scale ratings focusing on simplicity, informativeness, coherence, and faithfulness; and objective multiple-choice comprehension and recall measures of reader understanding. Additionally, we examined the alignment between 10 automated evaluation metrics and human judgments. Our findings indicate that while LLMs can generate PLSs that appear indistinguishable from human-written ones in subjective evaluations, human-written PLSs lead to significantly better comprehension. Furthermore, automated evaluation metrics fail to reflect human judgment, calling into question their suitability for evaluating PLSs. This is the first study to systematically evaluate LLM-generated PLSs based on both reader preferences and comprehension outcomes. Our findings highlight the need for evaluation frameworks that move beyond surface-level quality and for generation methods that explicitly optimize for layperson comprehension.
Related papers
- Quantifying the Reasoning Abilities of LLMs on Real-world Clinical Cases [48.87360916431396]
We introduce MedR-Bench, a benchmarking dataset of 1,453 structured patient cases, annotated with reasoning references.<n>We propose a framework encompassing three critical examination recommendation, diagnostic decision-making, and treatment planning, simulating the entire patient care journey.<n>Using this benchmark, we evaluate five state-of-the-art reasoning LLMs, including DeepSeek-R1, OpenAI-o3-mini, and Gemini-2.0-Flash Thinking, etc.
arXiv Detail & Related papers (2025-03-06T18:35:39Z) - Enhancing Patient-Centric Communication: Leveraging LLMs to Simulate Patient Perspectives [19.462374723301792]
Large Language Models (LLMs) have demonstrated impressive capabilities in role-playing scenarios.<n>By mimicking human behavior, LLMs can anticipate responses based on concrete demographic or professional profiles.<n>We evaluate the effectiveness of LLMs in simulating individuals with diverse backgrounds and analyze the consistency of these simulated behaviors.
arXiv Detail & Related papers (2025-01-12T22:49:32Z) - Towards Understanding the Robustness of LLM-based Evaluations under Perturbations [9.944512689015998]
Large Language Models (LLMs) can serve as automatic evaluators for non-standardized metrics in summarization and dialog-based tasks.<n>We conduct experiments across multiple prompting strategies to examine how LLMs fare as quality evaluators when compared with human judgments.
arXiv Detail & Related papers (2024-12-12T13:31:58Z) - Aligning with Human Judgement: The Role of Pairwise Preference in Large Language Model Evaluators [48.54465599914978]
Large Language Models (LLMs) have demonstrated promising capabilities as automatic evaluators in assessing the quality of generated natural language.<n>LLMs still exhibit biases in evaluation and often struggle to generate coherent evaluations that align with human assessments.<n>We introduce Pairwise-preference Search (PAIRS), an uncertainty-guided search-based rank aggregation method that employs LLMs to conduct pairwise comparisons locally and efficiently ranks candidate texts globally.
arXiv Detail & Related papers (2024-03-25T17:11:28Z) - An In-depth Evaluation of Large Language Models in Sentence Simplification with Error-based Human Assessment [9.156064716689833]
This study provides in-depth insights into LLMs' performance while ensuring the reliability of the evaluation.<n>We select both closed-source and open-source LLMs, including GPT-4, Qwen2.5-72B, and Llama-3.2-3B.<n>Results show that LLMs generally generate fewer erroneous simplification outputs compared to the previous state-of-the-art.
arXiv Detail & Related papers (2024-03-08T00:19:24Z) - Attribute Structuring Improves LLM-Based Evaluation of Clinical Text Summaries [56.31117605097345]
Large language models (LLMs) have shown the potential to generate accurate clinical text summaries, but still struggle with issues regarding grounding and evaluation.<n>Here, we explore a general mitigation framework using Attribute Structuring (AS), which structures the summary evaluation process.<n>AS consistently improves the correspondence between human annotations and automated metrics in clinical text summarization.
arXiv Detail & Related papers (2024-03-01T21:59:03Z) - Evaluation of General Large Language Models in Contextually Assessing
Semantic Concepts Extracted from Adult Critical Care Electronic Health Record
Notes [17.648021186810663]
The purpose of this study was to evaluate the performance of Large Language Models (LLMs) in understanding and processing real-world clinical notes.
The GPT family models have demonstrated considerable efficiency, evidenced by their cost-effectiveness and time-saving capabilities.
arXiv Detail & Related papers (2024-01-24T16:52:37Z) - Style Over Substance: Evaluation Biases for Large Language Models [17.13064447978519]
This study investigates the behavior of crowd-sourced and expert annotators, as well as large language models (LLMs)
Our findings reveal a concerning bias in the evaluation process, as answers with factual errors are rated more favorably than answers that are too short or contained grammatical errors.
We propose independently evaluating machine-generated text across multiple dimensions, rather than merging all the evaluation aspects into a single score.
arXiv Detail & Related papers (2023-07-06T14:42:01Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Large Language Models are Not Yet Human-Level Evaluators for Abstractive
Summarization [66.08074487429477]
We investigate the stability and reliability of large language models (LLMs) as automatic evaluators for abstractive summarization.
We find that while ChatGPT and GPT-4 outperform the commonly used automatic metrics, they are not ready as human replacements.
arXiv Detail & Related papers (2023-05-22T14:58:13Z) - Can Large Language Models Be an Alternative to Human Evaluations? [80.81532239566992]
Large language models (LLMs) have demonstrated exceptional performance on unseen tasks when only the task instructions are provided.
We show that the result of LLM evaluation is consistent with the results obtained by expert human evaluation.
arXiv Detail & Related papers (2023-05-03T07:28:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.