Decomposed Inductive Procedure Learning: Learning Academic Tasks with Human-Like Data Efficiency
- URL: http://arxiv.org/abs/2505.10422v1
- Date: Thu, 15 May 2025 15:39:09 GMT
- Title: Decomposed Inductive Procedure Learning: Learning Academic Tasks with Human-Like Data Efficiency
- Authors: Daniel Weitekamp, Christopher MacLellan, Erik Harpstead, Kenneth Koedinger,
- Abstract summary: We find that decomposing learning into multiple distinct mechanisms significantly improves data efficiency.<n>Our findings suggest that integrating multiple specialized learning mechanisms may be key to bridging this gap.
- Score: 1.9165956916475038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human learning relies on specialization -- distinct cognitive mechanisms working together to enable rapid learning. In contrast, most modern neural networks rely on a single mechanism: gradient descent over an objective function. This raises the question: might human learners' relatively rapid learning from just tens of examples instead of tens of thousands in data-driven deep learning arise from our ability to use multiple specialized mechanisms of learning in combination? We investigate this question through an ablation analysis of inductive human learning simulations in online tutoring environments. Comparing reinforcement learning to a more data-efficient 3-mechanism symbolic rule induction approach, we find that decomposing learning into multiple distinct mechanisms significantly improves data efficiency, bringing it in line with human learning. Furthermore, we show that this decomposition has a greater impact on efficiency than the distinction between symbolic and subsymbolic learning alone. Efforts to align data-driven machine learning with human learning often overlook the stark difference in learning efficiency. Our findings suggest that integrating multiple specialized learning mechanisms may be key to bridging this gap.
Related papers
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Breaking the Curse of Dimensionality in Deep Neural Networks by Learning
Invariant Representations [1.9580473532948401]
This thesis explores the theoretical foundations of deep learning by studying the relationship between the architecture of these models and the inherent structures found within the data they process.
We ask What drives the efficacy of deep learning algorithms and allows them to beat the so-called curse of dimensionality.
Our methodology takes an empirical approach to deep learning, combining experimental studies with physics-inspired toy models.
arXiv Detail & Related papers (2023-10-24T19:50:41Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - An Entropy-Based Model for Hierarchical Learning [3.1473798197405944]
A common feature among real-world datasets is that data domains are multiscale.
We propose a learning model that exploits this multiscale data structure.
The hierarchical learning model is inspired by the logical and progressive easy-to-hard learning mechanism of human beings.
arXiv Detail & Related papers (2022-12-30T13:14:46Z) - Physics-Guided Hierarchical Reward Mechanism for Learning-Based Robotic
Grasping [10.424363966870775]
We develop a Physics-Guided Deep Reinforcement Learning with a Hierarchical Reward Mechanism to improve learning efficiency and generalizability for learning-based autonomous grasping.
Our method is validated in robotic grasping tasks with a 3-finger MICO robot arm.
arXiv Detail & Related papers (2022-05-26T18:01:56Z) - What Matters in Learning from Offline Human Demonstrations for Robot
Manipulation [64.43440450794495]
We conduct an extensive study of six offline learning algorithms for robot manipulation.
Our study analyzes the most critical challenges when learning from offline human data.
We highlight opportunities for learning from human datasets.
arXiv Detail & Related papers (2021-08-06T20:48:30Z) - Toward Understanding the Feature Learning Process of Self-supervised
Contrastive Learning [43.504548777955854]
We study how contrastive learning learns the feature representations for neural networks by analyzing its feature learning process.
We prove that contrastive learning using textbfReLU networks provably learns the desired sparse features if proper augmentations are adopted.
arXiv Detail & Related papers (2021-05-31T16:42:09Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
Machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and use them for predictive modeling.
Deep learning has become its own subfield of machine learning.
In the context of biological research, deep learning has been increasingly used to derive novel insights from high-dimensional biological data.
arXiv Detail & Related papers (2021-05-29T21:02:44Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.