Super-Resolution Generative Adversarial Networks based Video Enhancement
- URL: http://arxiv.org/abs/2505.10589v3
- Date: Sun, 25 May 2025 17:23:59 GMT
- Title: Super-Resolution Generative Adversarial Networks based Video Enhancement
- Authors: Kağan ÇETİN,
- Abstract summary: This work introduces an enhanced approach to video super-resolution by extending ordinary Single-Image-SIS (SRGAN) structure to handle-versarial data.<n>A modified framework that incorporates 3D Non-Local Blocks is developed, which is enabling the model to capture relationships across both spatial and temporal dimensions.<n>Results show improved temporal coherence, sharper textures, and fewer visual artifacts compared to traditional single-image methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces an enhanced approach to video super-resolution by extending ordinary Single-Image Super-Resolution (SISR) Super-Resolution Generative Adversarial Network (SRGAN) structure to handle spatio-temporal data. While SRGAN has proven effective for single-image enhancement, its design does not account for the temporal continuity required in video processing. To address this, a modified framework that incorporates 3D Non-Local Blocks is proposed, which is enabling the model to capture relationships across both spatial and temporal dimensions. An experimental training pipeline is developed, based on patch-wise learning and advanced data degradation techniques, to simulate real-world video conditions and learn from both local and global structures and details. This helps the model generalize better and maintain stability across varying video content while maintaining the general structure besides the pixel-wise correctness. Two model variants-one larger and one more lightweight-are presented to explore the trade-offs between performance and efficiency. The results demonstrate improved temporal coherence, sharper textures, and fewer visual artifacts compared to traditional single-image methods. This work contributes to the development of practical, learning-based solutions for video enhancement tasks, with potential applications in streaming, gaming, and digital restoration.
Related papers
- MambaMia: A State-Space-Model-Based Compression for Efficient Video Understanding in Large Multimodal Models [33.89483627891117]
We propose an efficient framework to compress multiple video-frame features before feeding them into large multimodal models.<n>Our framework emphasizes resource-conscious efficiency, making it practical for real-world deployments.
arXiv Detail & Related papers (2025-06-16T14:49:49Z) - FCA2: Frame Compression-Aware Autoencoder for Modular and Fast Compressed Video Super-Resolution [68.77813885751308]
State-of-the-art (SOTA) compressed video super-resolution (CVSR) models face persistent challenges, including prolonged inference time, complex training pipelines, and reliance on auxiliary information.<n>We propose an efficient and scalable solution inspired by the structural and statistical similarities between hyperspectral images (HSI) and video data.<n>Our approach introduces a compression-driven dimensionality reduction strategy that reduces computational complexity, accelerates inference, and enhances the extraction of temporal information across frames.
arXiv Detail & Related papers (2025-06-13T07:59:52Z) - DiffVSR: Revealing an Effective Recipe for Taming Robust Video Super-Resolution Against Complex Degradations [25.756755602342942]
We present DiffVSR, featuring a Progressive Learning Strategy (PLS) that systematically decomposes this learning burden through staged training.<n>Our framework additionally incorporates an Interweaved Latent Transition (ILT) technique that maintains competitive temporal consistency without additional training overhead.
arXiv Detail & Related papers (2025-01-17T10:53:03Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - Learning Spatial Adaptation and Temporal Coherence in Diffusion Models for Video Super-Resolution [151.1255837803585]
We propose a novel approach, pursuing Spatial Adaptation and Temporal Coherence (SATeCo) for video super-resolution.
SATeCo pivots on learning spatial-temporal guidance from low-resolution videos to calibrate both latent-space high-resolution video denoising and pixel-space video reconstruction.
Experiments conducted on the REDS4 and Vid4 datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-03-25T17:59:26Z) - Inflation with Diffusion: Efficient Temporal Adaptation for
Text-to-Video Super-Resolution [19.748048455806305]
We propose an efficient diffusion-based text-to-video super-resolution (SR) tuning approach.
We investigate different tuning approaches based on our inflated architecture and report trade-offs between computational costs and super-resolution quality.
arXiv Detail & Related papers (2024-01-18T22:25:16Z) - RAVEN: Rethinking Adversarial Video Generation with Efficient Tri-plane Networks [93.18404922542702]
We present a novel video generative model designed to address long-term spatial and temporal dependencies.
Our approach incorporates a hybrid explicit-implicit tri-plane representation inspired by 3D-aware generative frameworks.
Our model synthesizes high-fidelity video clips at a resolution of $256times256$ pixels, with durations extending to more than $5$ seconds at a frame rate of 30 fps.
arXiv Detail & Related papers (2024-01-11T16:48:44Z) - Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World
Video Super-Resolution [65.91317390645163]
Upscale-A-Video is a text-guided latent diffusion framework for video upscaling.
It ensures temporal coherence through two key mechanisms: locally, it integrates temporal layers into U-Net and VAE-Decoder, maintaining consistency within short sequences.
It also offers greater flexibility by allowing text prompts to guide texture creation and adjustable noise levels to balance restoration and generation.
arXiv Detail & Related papers (2023-12-11T18:54:52Z) - An Efficient Recurrent Adversarial Framework for Unsupervised Real-Time
Video Enhancement [132.60976158877608]
We propose an efficient adversarial video enhancement framework that learns directly from unpaired video examples.
In particular, our framework introduces new recurrent cells that consist of interleaved local and global modules for implicit integration of spatial and temporal information.
The proposed design allows our recurrent cells to efficiently propagate-temporal-information across frames and reduces the need for high complexity networks.
arXiv Detail & Related papers (2020-12-24T00:03:29Z) - Residual Channel Attention Generative Adversarial Network for Image
Super-Resolution and Noise Reduction [14.217260022873083]
As the deep networks go deeper, they become more difficult to train and more difficult to restore the finer texture details.
We propose a Residual Channel Attention-Generative Adversarial Network (RCA-GAN) to solve these problems.
RCA-GAN yields consistently better visual quality with more detailed and natural textures than baseline models.
arXiv Detail & Related papers (2020-04-28T17:23:46Z) - Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video
Super-Resolution [95.26202278535543]
A simple solution is to split it into two sub-tasks: video frame (VFI) and video super-resolution (VSR)
temporalsynthesis and spatial super-resolution are intra-related in this task.
We propose a one-stage space-time video super-resolution framework, which directly synthesizes an HR slow-motion video from an LFR, LR video.
arXiv Detail & Related papers (2020-02-26T16:59:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.