CRPE: Expanding The Reasoning Capability of Large Language Model for Code Generation
- URL: http://arxiv.org/abs/2505.10594v1
- Date: Thu, 15 May 2025 08:13:45 GMT
- Title: CRPE: Expanding The Reasoning Capability of Large Language Model for Code Generation
- Authors: Ningxin Gui, Qianghuai Jia, Feijun Jiang, Yuling Jiao, dechun wang, Jerry Zhijian Yang,
- Abstract summary: CRPE (Code Reasoning Process Enhancer) is a framework for data synthesis and model training.<n>We develop an enhanced COT-Coder that demonstrates marked improvements in code generation tasks.<n>Our COT-Coder-32B-StepDPO, based on Qwen2.5-Coder-32B-Base, exhibits superior performance with a pass@1 accuracy of 35.08, outperforming GPT4O on the benchmark.
- Score: 5.63821063617385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce CRPE (Code Reasoning Process Enhancer), an innovative three-stage framework for data synthesis and model training that advances the development of sophisticated code reasoning capabilities in large language models (LLMs). Building upon existing system-1 models, CRPE addresses the fundamental challenge of enhancing LLMs' analytical and logical processing in code generation tasks. Our framework presents a methodologically rigorous yet implementable approach to cultivating advanced code reasoning abilities in language models. Through the implementation of CRPE, we successfully develop an enhanced COT-Coder that demonstrates marked improvements in code generation tasks. Evaluation results on LiveCodeBench (20240701-20240901) demonstrate that our COT-Coder-7B-StepDPO, derived from Qwen2.5-Coder-7B-Base, with a pass@1 accuracy of 21.88, exceeds all models with similar or even larger sizes. Furthermore, our COT-Coder-32B-StepDPO, based on Qwen2.5-Coder-32B-Base, exhibits superior performance with a pass@1 accuracy of 35.08, outperforming GPT4O on the benchmark. Overall, CRPE represents a comprehensive, open-source method that encompasses the complete pipeline from instruction data acquisition through expert code reasoning data synthesis, culminating in an autonomous reasoning enhancement mechanism.
Related papers
- OpenCodeReasoning-II: A Simple Test Time Scaling Approach via Self-Critique [59.18475981916166]
We introduce OpenCodeReasoning-II, a dataset consisting of 2.5M question-solution-critique triples (approx. 35K unique programming questions)<n>In this work, we employ a two-stage supervised fine-tuning strategy. The first stage focuses on fine-tuning for code generation, while the second stage involves the joint training of models for both code generation and critique. Notably, the integration of our code generation and critique models leads to significant improvements in competitive coding performance.
arXiv Detail & Related papers (2025-07-11T23:35:54Z) - Teaching LLM to Reason: Reinforcement Learning from Algorithmic Problems without Code [76.80306464249217]
We propose TeaR, which aims at teaching LLMs to reason better.<n>TeaR leverages careful data curation and reinforcement learning to guide models in discovering optimal reasoning paths through code-related tasks.<n>We conduct extensive experiments using two base models and three long-CoT distillation models, with model sizes ranging from 1.5 billion to 32 billion parameters, and across 17 benchmarks spanning Math, Knowledge, Code, and Logical Reasoning.
arXiv Detail & Related papers (2025-07-10T07:34:05Z) - KodCode: A Diverse, Challenging, and Verifiable Synthetic Dataset for Coding [49.56049319037421]
KodCode is a synthetic dataset that addresses the persistent challenge of acquiring high-quality, verifiable training data.<n>It comprises question-solution-test triplets that are systematically validated via a self-verification procedure.<n>This pipeline yields a large-scale, robust and diverse coding dataset.
arXiv Detail & Related papers (2025-03-04T19:17:36Z) - UnitCoder: Scalable Iterative Code Synthesis with Unit Test Guidance [65.01483640267885]
Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet code generation remains a major challenge.<n>We introduce UnitCoder, a systematic pipeline leveraging model-generated unit tests to guide and validate the code generation process.<n>Our work presents a scalable approach that leverages model-generated unit tests to guide the synthesis of high-quality code data from pre-training corpora.
arXiv Detail & Related papers (2025-02-17T05:37:02Z) - CodeTree: Agent-guided Tree Search for Code Generation with Large Language Models [106.11371409170818]
Large language models (LLMs) can act as agents with capabilities to self-refine and improve generated code autonomously.
We propose CodeTree, a framework for LLM agents to efficiently explore the search space in different stages of the code generation process.
Specifically, we adopted a unified tree structure to explicitly explore different coding strategies, generate corresponding coding solutions, and subsequently refine the solutions.
arXiv Detail & Related papers (2024-11-07T00:09:54Z) - CodingTeachLLM: Empowering LLM's Coding Ability via AST Prior Knowledge [0.0]
We introduce CodingTeachLLM, a large language model (LLM) designed for coding teaching.<n>Our model realizes the structural disassembly and incremental guided output of educational knowledge.<n>Our model also achieves state-of-the-art in code abilities compared to open-source models.
arXiv Detail & Related papers (2024-03-13T05:38:39Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - Automatic Unit Test Data Generation and Actor-Critic Reinforcement
Learning for Code Synthesis [16.88062487980405]
We present a novel approach to automatically obtain data consisting of function signatures and associated Unit Tests.
We show that it, in conjunction with automatically generated training data, leads to improvement of a pre-trained code language model's performance.
arXiv Detail & Related papers (2023-10-20T17:13:16Z) - Execution-based Code Generation using Deep Reinforcement Learning [8.085533911328577]
PPOCoder is a new framework for code generation that combines pre-trained PL models with Proximal Policy Optimization.
PPOCoder seamlessly integrates external code-specific knowledge into the model optimization process.
It's important to note that PPOCoder is a task-agnostic and model-agnostic framework that can be used across different code generation tasks and PLs.
arXiv Detail & Related papers (2023-01-31T18:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.