GA3CE: Unconstrained 3D Gaze Estimation with Gaze-Aware 3D Context Encoding
- URL: http://arxiv.org/abs/2505.10671v1
- Date: Thu, 15 May 2025 19:24:15 GMT
- Title: GA3CE: Unconstrained 3D Gaze Estimation with Gaze-Aware 3D Context Encoding
- Authors: Yuki Kawana, Shintaro Shiba, Quan Kong, Norimasa Kobori,
- Abstract summary: We propose a novel 3D gaze estimation approach that learns spatial relationships between the subject and objects in the scene.<n>Our method targets unconstrained settings, including cases where close-up views of the subject's eyes are unavailable.
- Score: 5.908352631543411
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel 3D gaze estimation approach that learns spatial relationships between the subject and objects in the scene, and outputs 3D gaze direction. Our method targets unconstrained settings, including cases where close-up views of the subject's eyes are unavailable, such as when the subject is distant or facing away. Previous approaches typically rely on either 2D appearance alone or incorporate limited spatial cues using depth maps in the non-learnable post-processing step. Estimating 3D gaze direction from 2D observations in these scenarios is challenging; variations in subject pose, scene layout, and gaze direction, combined with differing camera poses, yield diverse 2D appearances and 3D gaze directions even when targeting the same 3D scene. To address this issue, we propose GA3CE: Gaze-Aware 3D Context Encoding. Our method represents subject and scene using 3D poses and object positions, treating them as 3D context to learn spatial relationships in 3D space. Inspired by human vision, we align this context in an egocentric space, significantly reducing spatial complexity. Furthermore, we propose D$^3$ (direction-distance-decomposed) positional encoding to better capture the spatial relationship between 3D context and gaze direction in direction and distance space. Experiments demonstrate substantial improvements, reducing mean angle error by 13%-37% compared to leading baselines on benchmark datasets in single-frame settings.
Related papers
- 3D Prior is All You Need: Cross-Task Few-shot 2D Gaze Estimation [27.51272922798475]
We introduce a novel cross-task 2D gaze estimation approach, aiming to adapt a pre-trained 3D gaze estimation network for 2D gaze prediction on unseen devices.<n>This task is highly challenging due to the domain gap between 3D and 2D gaze, unknown screen poses, and limited training data.<n>We evaluate our method on MPIIGaze, EVE, and GazeCapture datasets, collected respectively on laptops, desktop computers, and mobile devices.
arXiv Detail & Related papers (2025-02-06T13:37:09Z) - AugRefer: Advancing 3D Visual Grounding via Cross-Modal Augmentation and Spatial Relation-based Referring [49.78120051062641]
3D visual grounding aims to correlate a natural language description with the target object within a 3D scene.<n>Existing approaches commonly encounter a shortage of text3D pairs available for training.<n>We propose AugRefer, a novel approach for advancing 3D visual grounding.
arXiv Detail & Related papers (2025-01-16T09:57:40Z) - Weakly-Supervised 3D Visual Grounding based on Visual Linguistic Alignment [26.858034573776198]
We propose a weakly supervised approach for 3D visual grounding based on Visual Linguistic Alignment.<n>Our 3D-VLA exploits the superior ability of current large-scale vision-language models on aligning the semantics between texts and 2D images.<n>During the inference stage, the learned text-3D correspondence will help us ground the text queries to the 3D target objects even without 2D images.
arXiv Detail & Related papers (2023-12-15T09:08:14Z) - NDC-Scene: Boost Monocular 3D Semantic Scene Completion in Normalized
Device Coordinates Space [77.6067460464962]
Monocular 3D Semantic Scene Completion (SSC) has garnered significant attention in recent years due to its potential to predict complex semantics and geometry shapes from a single image, requiring no 3D inputs.
We identify several critical issues in current state-of-the-art methods, including the Feature Ambiguity of projected 2D features in the ray to the 3D space, the Pose Ambiguity of the 3D convolution, and the Imbalance in the 3D convolution across different depth levels.
We devise a novel Normalized Device Coordinates scene completion network (NDC-Scene) that directly extends the 2
arXiv Detail & Related papers (2023-09-26T02:09:52Z) - 3DRP-Net: 3D Relative Position-aware Network for 3D Visual Grounding [58.924180772480504]
3D visual grounding aims to localize the target object in a 3D point cloud by a free-form language description.
We propose a relation-aware one-stage framework, named 3D Relative Position-aware Network (3-Net)
arXiv Detail & Related papers (2023-07-25T09:33:25Z) - Generating Visual Spatial Description via Holistic 3D Scene
Understanding [88.99773815159345]
Visual spatial description (VSD) aims to generate texts that describe the spatial relations of the given objects within images.
With an external 3D scene extractor, we obtain the 3D objects and scene features for input images.
We construct a target object-centered 3D spatial scene graph (Go3D-S2G), such that we model the spatial semantics of target objects within the holistic 3D scenes.
arXiv Detail & Related papers (2023-05-19T15:53:56Z) - SAT: 2D Semantics Assisted Training for 3D Visual Grounding [95.84637054325039]
3D visual grounding aims at grounding a natural language description about a 3D scene, usually represented in the form of 3D point clouds, to the targeted object region.
Point clouds are sparse, noisy, and contain limited semantic information compared with 2D images.
We propose 2D Semantics Assisted Training (SAT) that utilizes 2D image semantics in the training stage to ease point-cloud-language joint representation learning.
arXiv Detail & Related papers (2021-05-24T17:58:36Z) - Deep Monocular 3D Human Pose Estimation via Cascaded Dimension-Lifting [10.336146336350811]
3D pose estimation from a single image is a challenging problem due to depth ambiguity.
One type of the previous methods lifts 2D joints, obtained by resorting to external 2D pose detectors, to the 3D space.
We propose a novel end-to-end framework that exploits the contextual information but also produces the output directly in the 3D space.
arXiv Detail & Related papers (2021-04-08T05:44:02Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
State-of-the-art methods for large-scale driving-scene LiDAR semantic segmentation often project and process the point clouds in the 2D space.
A straightforward solution to tackle the issue of 3D-to-2D projection is to keep the 3D representation and process the points in the 3D space.
We develop a 3D cylinder partition and a 3D cylinder convolution based framework, termed as Cylinder3D, which exploits the 3D topology relations and structures of driving-scene point clouds.
arXiv Detail & Related papers (2020-08-04T13:56:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.