LARGO: Latent Adversarial Reflection through Gradient Optimization for Jailbreaking LLMs
- URL: http://arxiv.org/abs/2505.10838v1
- Date: Fri, 16 May 2025 04:12:16 GMT
- Title: LARGO: Latent Adversarial Reflection through Gradient Optimization for Jailbreaking LLMs
- Authors: Ran Li, Hao Wang, Chengzhi Mao,
- Abstract summary: We introduce LARGO, a novel latent self-reflection attack that generates fluent jailbreaking prompts.<n>On benchmarks like AdvBench and JailbreakBench, LARGO surpasses leading jailbreaking techniques, including AutoDAN, by 44 points in attack success rate.
- Score: 13.432303050813864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Efficient red-teaming method to uncover vulnerabilities in Large Language Models (LLMs) is crucial. While recent attacks often use LLMs as optimizers, the discrete language space make gradient-based methods struggle. We introduce LARGO (Latent Adversarial Reflection through Gradient Optimization), a novel latent self-reflection attack that reasserts the power of gradient-based optimization for generating fluent jailbreaking prompts. By operating within the LLM's continuous latent space, LARGO first optimizes an adversarial latent vector and then recursively call the same LLM to decode the latent into natural language. This methodology yields a fast, effective, and transferable attack that produces fluent and stealthy prompts. On standard benchmarks like AdvBench and JailbreakBench, LARGO surpasses leading jailbreaking techniques, including AutoDAN, by 44 points in attack success rate. Our findings demonstrate a potent alternative to agentic LLM prompting, highlighting the efficacy of interpreting and attacking LLM internals through gradient optimization.
Related papers
- VERA: Variational Inference Framework for Jailbreaking Large Language Models [15.03256687264469]
API-only access to state-of-the-art LLMs highlights the need for effective black-box jailbreak methods.<n>We introduce VERA: Variational infErence fRamework for jAilbreaking.
arXiv Detail & Related papers (2025-06-27T22:22:00Z) - LLM-Virus: Evolutionary Jailbreak Attack on Large Language Models [59.29840790102413]
Existing jailbreak attacks are primarily based on opaque optimization techniques and gradient search methods.<n>We propose LLM-Virus, a jailbreak attack method based on evolutionary algorithm, termed evolutionary jailbreak.<n>Our results show that LLM-Virus achieves competitive or even superior performance compared to existing attack methods.
arXiv Detail & Related papers (2024-12-28T07:48:57Z) - LIAR: Leveraging Inference Time Alignment (Best-of-N) to Jailbreak LLMs in Seconds [98.20826635707341]
Jailbreak attacks expose vulnerabilities in safety-aligned LLMs by eliciting harmful outputs through carefully crafted prompts.<n>We frame jailbreaks as inference-time misalignment and introduce LIAR, a fast, black-box, best-of-$N$ sampling attack requiring no training.<n>We also introduce a theoretical "safety net against jailbreaks" metric to quantify safety alignment strength and derive suboptimality bounds.
arXiv Detail & Related papers (2024-12-06T18:02:59Z) - GASP: Efficient Black-Box Generation of Adversarial Suffixes for Jailbreaking LLMs [3.096869664709865]
We introduce Generative Adversarial Suffix Prompter (GASP) to improve adversarial suffix creation in a fully black-box setting.
Our experiments show that GASP can generate natural jailbreak prompts, significantly improving attack success rates, reducing training times, and accelerating inference speed.
arXiv Detail & Related papers (2024-11-21T14:00:01Z) - An Optimizable Suffix Is Worth A Thousand Templates: Efficient Black-box Jailbreaking without Affirmative Phrases via LLM as Optimizer [33.67942887761857]
We present ECLIPSE, a novel and efficient black-box jailbreaking method utilizing optimizable suffixes.<n>We employ task prompts to translate jailbreaking goals into natural language instructions, which guides the LLM to generate adversarial suffixes for malicious queries.<n>ECLIPSE achieves an average attack success rate (ASR) of 0.92 across three open-source LLMs and GPT-3.5-Turbo, significantly surpassing GCG in 2.4 times.
arXiv Detail & Related papers (2024-08-21T03:35:24Z) - Jailbreaking Large Language Models Through Alignment Vulnerabilities in Out-of-Distribution Settings [57.136748215262884]
We introduce ObscurePrompt for jailbreaking LLMs, inspired by the observed fragile alignments in Out-of-Distribution (OOD) data.<n>We first formulate the decision boundary in the jailbreaking process and then explore how obscure text affects LLM's ethical decision boundary.<n>Our approach substantially improves upon previous methods in terms of attack effectiveness, maintaining efficacy against two prevalent defense mechanisms.
arXiv Detail & Related papers (2024-06-19T16:09:58Z) - Efficient LLM-Jailbreaking by Introducing Visual Modality [28.925716670778076]
This paper focuses on jailbreaking attacks against large language models (LLMs)
Our approach begins by constructing a multimodal large language model (MLLM) through the incorporation of a visual module into the target LLM.
We convert the embJS into text space to facilitate the jailbreaking of the target LLM.
arXiv Detail & Related papers (2024-05-30T12:50:32Z) - Defending Large Language Models Against Jailbreak Attacks via Layer-specific Editing [14.094372002702476]
Large language models (LLMs) are increasingly being adopted in a wide range of real-world applications.
Recent studies have shown that LLMs are vulnerable to deliberately crafted adversarial prompts.
We propose a novel defense method termed textbfLayer-specific textbfEditing (LED) to enhance the resilience of LLMs against jailbreak attacks.
arXiv Detail & Related papers (2024-05-28T13:26:12Z) - Distract Large Language Models for Automatic Jailbreak Attack [8.364590541640482]
We propose a novel black-box jailbreak framework for automated red teaming of Large language models.
We designed malicious content concealing and memory reframing with an iterative optimization algorithm to jailbreak LLMs.
arXiv Detail & Related papers (2024-03-13T11:16:43Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
Large Language Models (LLMs) are designed to provide useful and safe responses.
adversarial prompts known as 'jailbreaks' can circumvent safeguards.
We propose ReNeLLM, an automatic framework that leverages LLMs themselves to generate effective jailbreak prompts.
arXiv Detail & Related papers (2023-11-14T16:02:16Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.