On the Security Risks of ML-based Malware Detection Systems: A Survey
- URL: http://arxiv.org/abs/2505.10903v1
- Date: Fri, 16 May 2025 06:15:31 GMT
- Title: On the Security Risks of ML-based Malware Detection Systems: A Survey
- Authors: Ping He, Yuhao Mao, Changjiang Li, Lorenzo Cavallaro, Ting Wang, Shouling Ji,
- Abstract summary: Malware presents a persistent threat to user privacy and data integrity.<n>To combat this, machine learning-based (ML-based) malware detection (MD) systems have been developed.<n>These systems have increasingly been attacked in recent years, undermining their effectiveness in practice.
- Score: 40.831924021306506
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Malware presents a persistent threat to user privacy and data integrity. To combat this, machine learning-based (ML-based) malware detection (MD) systems have been developed. However, these systems have increasingly been attacked in recent years, undermining their effectiveness in practice. While the security risks associated with ML-based MD systems have garnered considerable attention, the majority of prior works is limited to adversarial malware examples, lacking a comprehensive analysis of practical security risks. This paper addresses this gap by utilizing the CIA principles to define the scope of security risks. We then deconstruct ML-based MD systems into distinct operational stages, thus developing a stage-based taxonomy. Utilizing this taxonomy, we summarize the technical progress and discuss the gaps in the attack and defense proposals related to the ML-based MD systems within each stage. Subsequently, we conduct two case studies, using both inter-stage and intra-stage analyses according to the stage-based taxonomy to provide new empirical insights. Based on these analyses and insights, we suggest potential future directions from both inter-stage and intra-stage perspectives.
Related papers
- SafeMLRM: Demystifying Safety in Multi-modal Large Reasoning Models [50.34706204154244]
Acquiring reasoning capabilities catastrophically degrades inherited safety alignment.<n>Certain scenarios suffer 25 times higher attack rates.<n>Despite tight reasoning-answer safety coupling, MLRMs demonstrate nascent self-correction.
arXiv Detail & Related papers (2025-04-09T06:53:23Z) - Survey on AI-Generated Media Detection: From Non-MLLM to MLLM [51.91311158085973]
Methods for detecting AI-generated media have evolved rapidly.<n>General-purpose detectors based on MLLMs integrate authenticity verification, explainability, and localization capabilities.<n>Ethical and security considerations have emerged as critical global concerns.
arXiv Detail & Related papers (2025-02-07T12:18:20Z) - Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
This survey collects and analyzes the different threats faced by large language models-based agents.
We identify six key features of LLM-based agents, based on which we summarize the current research progress.
We select four representative agents as case studies to analyze the risks they may face in practical use.
arXiv Detail & Related papers (2024-11-14T15:40:04Z) - Explainable Artificial Intelligence (XAI) for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges [0.0]
Explainable AI (XAI) addresses this gap by enhancing model interpretability while maintaining strong detection capabilities.<n>We examine existing XAI frameworks, their application in malware classification and detection, and the challenges associated with making malware detection models more interpretable.<n>This survey serves as a valuable resource for researchers and practitioners seeking to bridge the gap between ML performance and explainability in cybersecurity.
arXiv Detail & Related papers (2024-09-09T08:19:33Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
Machine learning (ML) sees an increasing prevalence of being used in the internet-of-things (IoT)-based smart grid.
adversarial distortion injected into the power signal will greatly affect the system's normal control and operation.
It is imperative to conduct vulnerability assessment for MLsgAPPs applied in the context of safety-critical power systems.
arXiv Detail & Related papers (2023-08-30T03:29:26Z) - Towards Developing Safety Assurance Cases for Learning-Enabled Medical
Cyber-Physical Systems [3.098385261166847]
We develop a safety assurance case for Machine Learning controllers in learning-enabled MCPS.
We provide a detailed analysis by implementing a deep neural network for the prediction in Artificial Pancreas Systems.
We check the sufficiency of the ML data and analyze the correctness of the ML-based prediction using formal verification.
arXiv Detail & Related papers (2022-11-23T22:43:48Z) - System Safety Engineering for Social and Ethical ML Risks: A Case Study [0.5249805590164902]
Governments, industry, and academia have undertaken efforts to identify and mitigate harms in ML-driven systems.
Existing approaches are largely disjointed, ad-hoc and of unknown effectiveness.
We focus in particular on how this analysis can extend to identifying social and ethical risks and developing concrete design-level controls to mitigate them.
arXiv Detail & Related papers (2022-11-08T22:58:58Z) - Threat Assessment in Machine Learning based Systems [12.031113181911627]
We conduct an empirical study of threats reported against Machine Learning-based systems.
The study is based on 89 real-world ML attack scenarios from the MITRE's ATLAS database, the AI Incident Database, and the literature.
Results show that convolutional neural networks were one of the most targeted models among the attack scenarios.
arXiv Detail & Related papers (2022-06-30T20:19:50Z) - A Framework for Evaluating the Cybersecurity Risk of Real World, Machine
Learning Production Systems [41.470634460215564]
We develop an extension to the MulVAL attack graph generation and analysis framework to incorporate cyberattacks on ML production systems.
Using the proposed extension, security practitioners can apply attack graph analysis methods in environments that include ML components.
arXiv Detail & Related papers (2021-07-05T05:58:11Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - Towards a Robust and Trustworthy Machine Learning System Development [0.09236074230806578]
We present our recent survey on the state-of-the-art ML trustworthiness and technologies from a security engineering perspective.
We then push our studies forward above and beyond a survey by describing a metamodel we created that represents the body of knowledge in a standard and visualized way for ML practitioners.
We propose future research directions motivated by our findings to advance the development of robust and trustworthy ML systems.
arXiv Detail & Related papers (2021-01-08T14:43:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.