Learning traffic flows: Graph Neural Networks for Metamodelling Traffic Assignment
- URL: http://arxiv.org/abs/2505.11230v1
- Date: Fri, 16 May 2025 13:25:22 GMT
- Title: Learning traffic flows: Graph Neural Networks for Metamodelling Traffic Assignment
- Authors: Oskar Bohn Lassen, Serio Agriesti, Mohamed Eldafrawi, Daniele Gammelli, Guido Cantelmo, Guido Gentile, Francisco Camara Pereira,
- Abstract summary: The Traffic Assignment Problem is a fundamental, yet computationally expensive, task in transportation modeling, especially for large-scale networks.<n>Traditional methods require iterative simulations to reach equilibrium, making real-time or large-scale scenario analysis challenging.<n>We propose a learning-based approach using Message-Passing Neural Networks as a metamodel to approximate the equilibrium flow of the User Equilibrium assignment.
- Score: 1.078439500019266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Traffic Assignment Problem is a fundamental, yet computationally expensive, task in transportation modeling, especially for large-scale networks. Traditional methods require iterative simulations to reach equilibrium, making real-time or large-scale scenario analysis challenging. In this paper, we propose a learning-based approach using Message-Passing Neural Networks as a metamodel to approximate the equilibrium flow of the Stochastic User Equilibrium assignment. Our model is designed to mimic the algorithmic structure used in conventional traffic simulators allowing it to better capture the underlying process rather than just the data. We benchmark it against other conventional deep learning techniques and evaluate the model's robustness by testing its ability to predict traffic flows on input data outside the domain on which it was trained. This approach offers a promising solution for accelerating out-of-distribution scenario assessments, reducing computational costs in large-scale transportation planning, and enabling real-time decision-making.
Related papers
- Multi-Class Traffic Assignment using Multi-View Heterogeneous Graph Attention Networks [5.205252810216621]
We develop an innovative surrogate model for a traffic assignment when multi-class vehicles are involved.<n>Our model adheres to flow conservation while delivering highly accurate predictions for link flows and utilization ratios.
arXiv Detail & Related papers (2025-01-15T19:53:14Z) - NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
We propose to pre-train a general-purpose machine learning model to capture traffic dynamics with only traffic data from NetFlow records.<n>We address challenges such as unifying network feature representations, learning from large unlabeled traffic data volume, and testing on real downstream tasks in DDoS attack detection.
arXiv Detail & Related papers (2024-12-30T00:47:49Z) - Towards a graph-based foundation model for network traffic analysis [3.0558245652654907]
Foundation models can grasp the complexities of network traffic dynamics and adapt to any specific task or environment with minimal fine-tuning.
Previous approaches have used tokenized hex-level packet data.
We propose a new, efficient graph-based alternative at the flow-level.
arXiv Detail & Related papers (2024-09-12T15:04:34Z) - Liquid Neural Network-based Adaptive Learning vs. Incremental Learning for Link Load Prediction amid Concept Drift due to Network Failures [37.66676003679306]
Adapting to concept drift is a challenging task in machine learning.
In communication networks, such issue emerges when performing traffic forecasting following afailure event.
We propose an approach that exploits adaptive learning algorithms, namely, liquid neural networks, which are capable of self-adaptation to abrupt changes in data patterns without requiring any retraining.
arXiv Detail & Related papers (2024-04-08T08:47:46Z) - Energy-Guided Data Sampling for Traffic Prediction with Mini Training Datasets [13.065729535009925]
We propose an innovative solution that merges Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) architecture to enhance the prediction of traffic flow dynamics.
A key revelation of our research is the feasibility of sampling training data for large traffic systems from simulations conducted on smaller traffic systems.
arXiv Detail & Related papers (2024-03-27T15:57:42Z) - Learning-based adaption of robotic friction models [50.72489248401199]
We introduce a novel approach to adapt an existing friction model to new dynamics using as little data as possible.<n>Our method does not rely on data with external load during training, eliminating the need for external torque sensors.
arXiv Detail & Related papers (2023-10-25T14:50:15Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Data-Driven Traffic Assignment: A Novel Approach for Learning Traffic
Flow Patterns Using a Graph Convolutional Neural Network [1.3706331473063877]
We present a novel data-driven approach of learning traffic flow patterns of a transportation network.
We develop a neural network-based framework known as Graph Convolutional Neural Network (GCNN) to solve it.
When the training of the model is complete, it can instantly determine the traffic flows of a large-scale network.
arXiv Detail & Related papers (2022-02-21T19:45:15Z) - A Lightweight, Efficient and Explainable-by-Design Convolutional Neural
Network for Internet Traffic Classification [9.365794791156972]
This paper introduces a new Lightweight, Efficient and eXplainable-by-design convolutional neural network (LEXNet) for Internet traffic classification.
LEXNet relies on a new residual block (for lightweight and efficiency purposes) and prototype layer (for explainability)
Based on a commercial-grade dataset, our evaluation shows that LEXNet succeeds to maintain the same accuracy as the best performing state-of-the-art neural network.
arXiv Detail & Related papers (2022-02-11T10:21:34Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.