Multiclass threshold-based classification
- URL: http://arxiv.org/abs/2505.11276v1
- Date: Fri, 16 May 2025 14:11:26 GMT
- Title: Multiclass threshold-based classification
- Authors: Francesco Marchetti, Edoardo Legnaro, Sabrina Guastavino,
- Abstract summary: We introduce a threshold-based framework for multiclass classification that generalizes the standard argmax rule.<n>We show that the multidimensional threshold-based setting yields consistent performance improvements across various networks and datasets.
- Score: 2.66269503676104
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we introduce a threshold-based framework for multiclass classification that generalizes the standard argmax rule. This is done by replacing the probabilistic interpretation of softmax outputs with a geometric one on the multidimensional simplex, where the classification depends on a multidimensional threshold. This change of perspective enables for any trained classification network an a posteriori optimization of the classification score by means of threshold tuning, as usually carried out in the binary setting. This allows a further refinement of the prediction capability of any network. Moreover, this multidimensional threshold-based setting makes it possible to define score-oriented losses, which are based on the interpretation of the threshold as a random variable. Our experiments show that the multidimensional threshold tuning yields consistent performance improvements across various networks and datasets, and that the proposed multiclass score-oriented losses are competitive with standard loss functions, resembling the advantages observed in the binary case.
Related papers
- Deep Imbalanced Regression via Hierarchical Classification Adjustment [50.19438850112964]
Regression tasks in computer vision are often formulated into classification by quantizing the target space into classes.
The majority of training samples lie in a head range of target values, while a minority of samples span a usually larger tail range.
We propose to construct hierarchical classifiers for solving imbalanced regression tasks.
Our novel hierarchical classification adjustment (HCA) for imbalanced regression shows superior results on three diverse tasks.
arXiv Detail & Related papers (2023-10-26T04:54:39Z) - Hierarchical confusion matrix for classification performance evaluation [0.0]
We develop the concept of a hierarchical confusion matrix and prove its applicability to all types of hierarchical classification problems.
We use measures based on the novel confusion matrix to evaluate models within a benchmark for three real world hierarchical classification applications.
The results outline the reasonability of this approach and its usefulness to evaluate hierarchical classification problems.
arXiv Detail & Related papers (2023-06-15T19:31:59Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - Maximally Compact and Separated Features with Regular Polytope Networks [22.376196701232388]
We show how to extract from CNNs features the properties of emphmaximum inter-class separability and emphmaximum intra-class compactness.
We obtain features similar to what can be obtained with the well-known citewen2016discriminative and other similar approaches.
arXiv Detail & Related papers (2023-01-15T15:20:57Z) - Hierarchical classification at multiple operating points [1.520694326234112]
We present an efficient algorithm to produce operating characteristic curves for any method that assigns a score to every class in the hierarchy.
We propose two novel loss functions and show that a soft variant of the structured hinge loss is able to significantly outperform the flat baseline.
arXiv Detail & Related papers (2022-10-19T23:36:16Z) - Layer Ensembles [95.42181254494287]
We introduce a method for uncertainty estimation that considers a set of independent categorical distributions for each layer of the network.
We show that the method can be further improved by ranking samples, resulting in models that require less memory and time to run.
arXiv Detail & Related papers (2022-10-10T17:52:47Z) - On the rate of convergence of a classifier based on a Transformer
encoder [55.41148606254641]
The rate of convergence of the misclassification probability of the classifier towards the optimal misclassification probability is analyzed.
It is shown that this classifier is able to circumvent the curse of dimensionality provided the aposteriori probability satisfies a suitable hierarchical composition model.
arXiv Detail & Related papers (2021-11-29T14:58:29Z) - An evidential classifier based on Dempster-Shafer theory and deep
learning [6.230751621285322]
We propose a new classification system based on Dempster-Shafer (DS) theory and a convolutional neural network (CNN) architecture for set-valued classification.
Experiments on image recognition, signal processing, and semantic-relationship classification tasks demonstrate that the proposed combination of deep CNN, DS layer, and expected utility layer makes it possible to improve classification accuracy.
arXiv Detail & Related papers (2021-03-25T01:29:05Z) - Margin-Based Transfer Bounds for Meta Learning with Deep Feature
Embedding [67.09827634481712]
We leverage margin theory and statistical learning theory to establish three margin-based transfer bounds for meta-learning based multiclass classification (MLMC)
These bounds reveal that the expected error of a given classification algorithm for a future task can be estimated with the average empirical error on a finite number of previous tasks.
Experiments on three benchmarks show that these margin-based models still achieve competitive performance.
arXiv Detail & Related papers (2020-12-02T23:50:51Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
Machine learning algorithms are susceptible to data poisoning attacks.
We present a unifying view of randomized smoothing over arbitrary functions.
We propose a new strategy for building classifiers that are pointwise-certifiably robust to general data poisoning attacks.
arXiv Detail & Related papers (2020-02-07T21:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.