Anti-aliasing of neural distortion effects via model fine tuning
- URL: http://arxiv.org/abs/2505.11375v1
- Date: Fri, 16 May 2025 15:40:33 GMT
- Title: Anti-aliasing of neural distortion effects via model fine tuning
- Authors: Alistair Carson, Alec Wright, Stefan Bilbao,
- Abstract summary: We present a method for reducing aliasing in neural models via a teacher-student fine tuning approach.<n>Our results show that this method significantly suppresses aliasing for both long-short-term-memory networks (LSTM) and temporal convolutional networks (TCN)
- Score: 4.751886527142779
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks have become ubiquitous with guitar distortion effects modelling in recent years. Despite their ability to yield perceptually convincing models, they are susceptible to frequency aliasing when driven by high frequency and high gain inputs. Nonlinear activation functions create both the desired harmonic distortion and unwanted aliasing distortion as the bandwidth of the signal is expanded beyond the Nyquist frequency. Here, we present a method for reducing aliasing in neural models via a teacher-student fine tuning approach, where the teacher is a pre-trained model with its weights frozen, and the student is a copy of this with learnable parameters. The student is fine-tuned against an aliasing-free dataset generated by passing sinusoids through the original model and removing non-harmonic components from the output spectra. Our results show that this method significantly suppresses aliasing for both long-short-term-memory networks (LSTM) and temporal convolutional networks (TCN). In the majority of our case studies, the reduction in aliasing was greater than that achieved by two times oversampling. One side-effect of the proposed method is that harmonic distortion components are also affected. This adverse effect was found to be model-dependent, with the LSTM models giving the best balance between anti-aliasing and preserving the perceived similarity to an analog reference device.
Related papers
- Freqformer: Image-Demoiréing Transformer via Efficient Frequency Decomposition [83.40450475728792]
We present Freqformer, a Transformer-based framework specifically designed for image demoir'eing through targeted frequency separation.<n>Our method performs an effective frequency decomposition that explicitly splits moir'e patterns into high-frequency spatially-localized textures and low-frequency scale-robust color distortions.<n>Experiments on various demoir'eing benchmarks demonstrate that Freqformer achieves state-of-the-art performance with a compact model size.
arXiv Detail & Related papers (2025-05-25T12:23:10Z) - Resampling Filter Design for Multirate Neural Audio Effect Processing [9.149661171430257]
We explore the use of signal resampling at the input and output of the neural network as an alternative solution.<n>We show that a two-stage design consisting of a half-band IIR filter cascaded with a Kaiser window FIR filter can give similar or better results to the previously proposed model adjustment method.
arXiv Detail & Related papers (2025-01-30T16:44:49Z) - On Disentangled Training for Nonlinear Transform in Learned Image Compression [59.66885464492666]
Learned image compression (LIC) has demonstrated superior rate-distortion (R-D) performance compared to traditional codecs.<n>Existing LIC methods overlook the slow convergence caused by compacting energy in learning nonlinear transforms.<n>We propose a linear auxiliary transform (AuxT) to disentangle energy compaction in training nonlinear transforms.
arXiv Detail & Related papers (2025-01-23T15:32:06Z) - DAT: Improving Adversarial Robustness via Generative Amplitude Mix-up in Frequency Domain [23.678658814438855]
adversarial training (AT) is developed to protect deep neural networks (DNNs) from adversarial attacks.
Recent studies show that adversarial attacks disproportionately impact the patterns within the phase of the sample's frequency spectrum.
We propose an optimized Adversarial Amplitude Generator (AAG) to achieve a better tradeoff between improving the model's robustness and retaining phase patterns.
arXiv Detail & Related papers (2024-10-16T07:18:36Z) - Differentiable Grey-box Modelling of Phaser Effects using Frame-based
Spectral Processing [21.053861381437827]
This work presents a differentiable digital signal processing approach to modelling phaser effects.
The proposed model processes audio in short frames to implement a time-varying filter in the frequency domain.
We show that the model can be trained to emulate an analog reference device, while retaining interpretable and adjustable parameters.
arXiv Detail & Related papers (2023-06-02T07:53:41Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - Effect of Batch Normalization on Noise Resistant Property of Deep
Learning Models [3.520496620951778]
There are concerns about the presence of analog noise which causes changes to the weight of the models, leading to performance degradation of deep learning model.
The effect of the popular batch normalization layer on the noise resistant ability of deep learning model is investigated in this work.
arXiv Detail & Related papers (2022-05-15T20:10:21Z) - Treatment Learning Causal Transformer for Noisy Image Classification [62.639851972495094]
In this work, we incorporate this binary information of "existence of noise" as treatment into image classification tasks to improve prediction accuracy.
Motivated from causal variational inference, we propose a transformer-based architecture, that uses a latent generative model to estimate robust feature representations for noise image classification.
We also create new noisy image datasets incorporating a wide range of noise factors for performance benchmarking.
arXiv Detail & Related papers (2022-03-29T13:07:53Z) - Simpler is better: spectral regularization and up-sampling techniques
for variational autoencoders [1.2234742322758418]
characterization of the spectral behavior of generative models based on neural networks remains an open issue.
Recent research has focused heavily on generative adversarial networks and the high-frequency discrepancies between real and generated images.
We propose a simple 2D Fourier transform-based spectral regularization loss for the Variational Autoencoders (VAEs)
arXiv Detail & Related papers (2022-01-19T11:49:57Z) - Asymmetric Heavy Tails and Implicit Bias in Gaussian Noise Injections [73.95786440318369]
We focus on the so-called implicit effect' of GNIs, which is the effect of the injected noise on the dynamics of gradient descent (SGD)
We show that this effect induces an asymmetric heavy-tailed noise on gradient updates.
We then formally prove that GNIs induce an implicit bias', which varies depending on the heaviness of the tails and the level of asymmetry.
arXiv Detail & Related papers (2021-02-13T21:28:09Z) - Unleashing the Power of Contrastive Self-Supervised Visual Models via
Contrast-Regularized Fine-Tuning [94.35586521144117]
We investigate whether applying contrastive learning to fine-tuning would bring further benefits.
We propose Contrast-regularized tuning (Core-tuning), a novel approach for fine-tuning contrastive self-supervised visual models.
arXiv Detail & Related papers (2021-02-12T16:31:24Z) - Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating
Back-Propagation for Saliency Detection [54.98042023365694]
We propose a noise-aware encoder-decoder framework to disentangle a clean saliency predictor from noisy training examples.
The proposed model consists of two sub-models parameterized by neural networks.
arXiv Detail & Related papers (2020-07-23T18:47:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.