Machine Learning Approaches to Vocal Register Classification in Contemporary Male Pop Music
- URL: http://arxiv.org/abs/2505.11378v1
- Date: Fri, 16 May 2025 15:41:28 GMT
- Title: Machine Learning Approaches to Vocal Register Classification in Contemporary Male Pop Music
- Authors: Alexander Kim, Charlotte Botha,
- Abstract summary: In pop music, where a single artist may use a variety of timbre's and textures to achieve a desired quality, it can be difficult to identify what vocal register within the vocal range a singer is using.<n>This paper presents two methods for classifying vocal registers in an audio signal of male pop music through the analysis of textural features of mel-spectrogram images.
- Score: 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For singers of all experience levels, one of the most daunting challenges in learning technical repertoire is navigating placement and vocal register in and around the passagio (passage between chest voice and head voice registers). Particularly in pop music, where a single artist may use a variety of timbre's and textures to achieve a desired quality, it can be difficult to identify what vocal register within the vocal range a singer is using. This paper presents two methods for classifying vocal registers in an audio signal of male pop music through the analysis of textural features of mel-spectrogram images. Additionally, we will discuss the practical integration of these models for vocal analysis tools, and introduce a concurrently developed software called AVRA which stands for Automatic Vocal Register Analysis. Our proposed methods achieved consistent classification of vocal register through both Support Vector Machine (SVM) and Convolutional Neural Network (CNN) models, which supports the promise of more robust classification possibilities across more voice types and genres of singing.
Related papers
- Prompt-Singer: Controllable Singing-Voice-Synthesis with Natural Language Prompt [50.25271407721519]
We propose Prompt-Singer, the first SVS method that enables attribute controlling on singer gender, vocal range and volume with natural language.<n>We adopt a model architecture based on a decoder-only transformer with a multi-scale hierarchy, and design a range-melody decoupled pitch representation.<n>Experiments show that our model achieves favorable controlling ability and audio quality.
arXiv Detail & Related papers (2024-03-18T13:39:05Z) - Singer Identity Representation Learning using Self-Supervised Techniques [0.0]
We propose a framework for training singer identity encoders to extract representations suitable for various singing-related tasks.
We explore different self-supervised learning techniques on a large collection of isolated vocal tracks.
We evaluate the quality of the resulting representations on singer similarity and identification tasks.
arXiv Detail & Related papers (2024-01-10T10:41:38Z) - StyleSinger: Style Transfer for Out-of-Domain Singing Voice Synthesis [63.18764165357298]
Style transfer for out-of-domain singing voice synthesis (SVS) focuses on generating high-quality singing voices with unseen styles.<n>StyleSinger is the first singing voice synthesis model for zero-shot style transfer of out-of-domain reference singing voice samples.<n>Our evaluations in zero-shot style transfer undeniably establish that StyleSinger outperforms baseline models in both audio quality and similarity to the reference singing voice samples.
arXiv Detail & Related papers (2023-12-17T15:26:16Z) - Enhancing the vocal range of single-speaker singing voice synthesis with
melody-unsupervised pre-training [82.94349771571642]
This work proposes a melody-unsupervised multi-speaker pre-training method to enhance the vocal range of the single-speaker.
It is the first to introduce a differentiable duration regulator to improve the rhythm naturalness of the synthesized voice.
Experimental results verify that the proposed SVS system outperforms the baseline on both sound quality and naturalness.
arXiv Detail & Related papers (2023-09-01T06:40:41Z) - PrimaDNN': A Characteristics-aware DNN Customization for Singing
Technique Detection [5.399268560100004]
We propose PrimaDNN, a deep neural network model with a characteristics-oriented improvement.
In the results of J-POP singing technique detection, PrimaDNN achieved the best results of 44.9% at the overall macro-F measure.
arXiv Detail & Related papers (2023-06-25T10:15:18Z) - Learning the Beauty in Songs: Neural Singing Voice Beautifier [69.21263011242907]
We are interested in a novel task, singing voice beautifying (SVB)
Given the singing voice of an amateur singer, SVB aims to improve the intonation and vocal tone of the voice, while keeping the content and vocal timbre.
We introduce Neural Singing Voice Beautifier (NSVB), the first generative model to solve the SVB task.
arXiv Detail & Related papers (2022-02-27T03:10:12Z) - Audiovisual Singing Voice Separation [25.862550744570324]
Video model takes the input of mouth movement and fuses it into the feature embeddings of an audio-based separation framework.
We create two audiovisual singing performance datasets for training and evaluation.
The proposed method outperforms audio-based methods in terms of separation quality on most test recordings.
arXiv Detail & Related papers (2021-07-01T06:04:53Z) - Unsupervised Cross-Domain Singing Voice Conversion [105.1021715879586]
We present a wav-to-wav generative model for the task of singing voice conversion from any identity.
Our method utilizes both an acoustic model, trained for the task of automatic speech recognition, together with melody extracted features to drive a waveform-based generator.
arXiv Detail & Related papers (2020-08-06T18:29:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.