Face Consistency Benchmark for GenAI Video
- URL: http://arxiv.org/abs/2505.11425v1
- Date: Fri, 16 May 2025 16:41:44 GMT
- Title: Face Consistency Benchmark for GenAI Video
- Authors: Michal Podstawski, Malgorzata Kudelska, Haohong Wang,
- Abstract summary: This paper introduces the Face Consistency Benchmark (FCB), a framework for evaluating and comparing the consistency of characters in AI-generated videos.<n>This work represents a crucial step toward improving character consistency in AI video generation technologies.
- Score: 1.137903861863692
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video generation driven by artificial intelligence has advanced significantly, enabling the creation of dynamic and realistic content. However, maintaining character consistency across video sequences remains a major challenge, with current models struggling to ensure coherence in appearance and attributes. This paper introduces the Face Consistency Benchmark (FCB), a framework for evaluating and comparing the consistency of characters in AI-generated videos. By providing standardized metrics, the benchmark highlights gaps in existing solutions and promotes the development of more reliable approaches. This work represents a crucial step toward improving character consistency in AI video generation technologies.
Related papers
- EndoGen: Conditional Autoregressive Endoscopic Video Generation [51.97720772069513]
We propose the first conditional endoscopic video generation framework, namely EndoGen.<n>Specifically, we build an autoregressive model with a tailored Spatiotemporal Grid-Frame Patterning strategy.<n>We demonstrate the effectiveness of our framework in generating high-quality, conditionally guided endoscopic content.
arXiv Detail & Related papers (2025-07-23T10:32:20Z) - VQ-Insight: Teaching VLMs for AI-Generated Video Quality Understanding via Progressive Visual Reinforcement Learning [21.35520258725298]
VQ-Insight is a novel reasoning-style framework for AIGC video quality assessment.<n>It combines image quality warm-up, general task-specific temporal learning, and joint optimization with the video generation model.<n>It consistently outperforms state-of-the-art baselines in preference comparison, multi-dimension scoring, and natural video scoring.
arXiv Detail & Related papers (2025-06-23T12:20:14Z) - InfLVG: Reinforce Inference-Time Consistent Long Video Generation with GRPO [73.33751812982342]
InfLVG is an inference-time framework that enables coherent long video generation without requiring additional long-form video data.<n>We show that InfLVG can extend video length by up to 9$times$, achieving strong consistency and semantic fidelity across scenes.
arXiv Detail & Related papers (2025-05-23T07:33:25Z) - ASurvey: Spatiotemporal Consistency in Video Generation [72.82267240482874]
Video generation schemes by leveraging a dynamic visual generation method, pushes the boundaries of Artificial Intelligence Generated Content (AIGC)<n>Recent works have aimed at addressing thetemporal consistency issue in video generation, while few literature review has been organized from this perspective.<n>We systematically review recent advances in video generation, covering five key aspects: foundation models, information representations, generation schemes, post-processing techniques, and evaluation metrics.
arXiv Detail & Related papers (2025-02-25T05:20:51Z) - Enhance-A-Video: Better Generated Video for Free [57.620595159855064]
We introduce a training-free approach to enhance the coherence and quality of DiT-based generated videos.<n>Our approach can be easily applied to most DiT-based video generation frameworks without any retraining or fine-tuning.
arXiv Detail & Related papers (2025-02-11T12:22:35Z) - Scalable Framework for Classifying AI-Generated Content Across Modalities [0.0]
This paper presents a scalable framework that integrates perceptual hashing, similarity measurement, and pseudo-labeling.<n> Comprehensive evaluations on the Defactify4 dataset demonstrate competitive performance in text and image classification tasks.<n>These results highlight the framework's potential for real-world applications as generative AI continues to evolve.
arXiv Detail & Related papers (2025-02-01T09:28:40Z) - Understanding Long Videos via LLM-Powered Entity Relation Graphs [51.13422967711056]
GraphVideoAgent is a framework that maps and monitors the evolving relationships between visual entities throughout the video sequence.<n>Our approach demonstrates remarkable effectiveness when tested against industry benchmarks.
arXiv Detail & Related papers (2025-01-27T10:57:24Z) - RepVideo: Rethinking Cross-Layer Representation for Video Generation [53.701548524818534]
We propose RepVideo, an enhanced representation framework for text-to-video diffusion models.<n>By accumulating features from neighboring layers to form enriched representations, this approach captures more stable semantic information.<n>Our experiments demonstrate that our RepVideo not only significantly enhances the ability to generate accurate spatial appearances, but also improves temporal consistency in video generation.
arXiv Detail & Related papers (2025-01-15T18:20:37Z) - Advancing Video Quality Assessment for AIGC [17.23281750562252]
We propose a novel loss function that combines mean absolute error with cross-entropy loss to mitigate inter-frame quality inconsistencies.
We also introduce the innovative S2CNet technique to retain critical content, while leveraging adversarial training to enhance the model's generalization capabilities.
arXiv Detail & Related papers (2024-09-23T10:36:22Z) - TC-Bench: Benchmarking Temporal Compositionality in Text-to-Video and Image-to-Video Generation [97.96178992465511]
We argue that generated videos should incorporate the emergence of new concepts and their relation transitions like in real-world videos as time progresses.
To assess the Temporal Compositionality of video generation models, we propose TC-Bench, a benchmark of meticulously crafted text prompts, corresponding ground truth videos, and robust evaluation metrics.
arXiv Detail & Related papers (2024-06-12T21:41:32Z) - AIGCBench: Comprehensive Evaluation of Image-to-Video Content Generated
by AI [1.1035305628305816]
This paper introduces AIGCBench, a pioneering comprehensive benchmark designed to evaluate a variety of video generation tasks.
A varied and open-domain image-text dataset that evaluates different state-of-the-art algorithms under equivalent conditions.
We employ a novel text combiner and GPT-4 to create rich text prompts, which are then used to generate images via advanced Text-to-Image models.
arXiv Detail & Related papers (2024-01-03T10:08:40Z) - Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World
Video Super-Resolution [65.91317390645163]
Upscale-A-Video is a text-guided latent diffusion framework for video upscaling.
It ensures temporal coherence through two key mechanisms: locally, it integrates temporal layers into U-Net and VAE-Decoder, maintaining consistency within short sequences.
It also offers greater flexibility by allowing text prompts to guide texture creation and adjustable noise levels to balance restoration and generation.
arXiv Detail & Related papers (2023-12-11T18:54:52Z) - HRVGAN: High Resolution Video Generation using Spatio-Temporal GAN [0.0]
We propose a novel deep generative network architecture designed specifically for high-resolution video synthesis.<n>Our approach integrates key concepts from Wasserstein Generative Adrial Networks (WGANs)<n>Our training objective combines a pixel-wise mean squared error loss with an adversarial loss to balance frame-level accuracy and video realism.
arXiv Detail & Related papers (2020-08-17T20:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.