ZeroTuning: Unlocking the Initial Token's Power to Enhance Large Language Models Without Training
- URL: http://arxiv.org/abs/2505.11739v1
- Date: Fri, 16 May 2025 22:52:24 GMT
- Title: ZeroTuning: Unlocking the Initial Token's Power to Enhance Large Language Models Without Training
- Authors: Feijiang Han, Xiaodong Yu, Jianheng Tang, Lyle Ungar,
- Abstract summary: We show that tuning the initial token's attention sharpens or flattens the attention distribution over subsequent tokens.<n>We propose ZeroTuning, a training-free approach that improves LLM performance by applying head-specific attention adjustments to this special token.
- Score: 8.486942657544825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, training-free methods for improving large language models (LLMs) have attracted growing interest, with token-level attention tuning emerging as a promising and interpretable direction. However, existing methods typically rely on auxiliary mechanisms to identify important or irrelevant task-specific tokens, introducing potential bias and limiting applicability. In this paper, we uncover a surprising and elegant alternative: the semantically empty initial token is a powerful and underexplored control point for optimizing model behavior. Through theoretical analysis, we show that tuning the initial token's attention sharpens or flattens the attention distribution over subsequent tokens, and its role as an attention sink amplifies this effect. Empirically, we find that: (1) tuning its attention improves LLM performance more effectively than tuning other task-specific tokens; (2) the effect follows a consistent trend across layers, with earlier layers having greater impact, but varies across attention heads, with different heads showing distinct preferences in how they attend to this token. Based on these findings, we propose ZeroTuning, a training-free approach that improves LLM performance by applying head-specific attention adjustments to this special token. Despite tuning only one token, ZeroTuning achieves higher performance on text classification, multiple-choice, and multi-turn conversation tasks across models such as Llama, Qwen, and DeepSeek. For example, ZeroTuning improves Llama-3.1-8B by 11.71% on classification, 2.64% on QA tasks, and raises its multi-turn score from 7.804 to 7.966. The method is also robust to limited resources, few-shot settings, long contexts, quantization, decoding strategies, and prompt variations. Our work sheds light on a previously overlooked control point in LLMs, offering new insights into both inference-time tuning and model interpretability.
Related papers
- IGD: Token Decisiveness Modeling via Information Gain in LLMs for Personalized Recommendation [70.2753541780788]
We introduce an Information Gain-based Decisiveness-aware Token handling (IGD) strategy that integrates token decisiveness into both tuning and decoding.<n>IGD consistently improves recommendation accuracy, achieving significant gains on widely used ranking metrics compared to strong baselines.
arXiv Detail & Related papers (2025-06-16T08:28:19Z) - ALPS: Attention Localization and Pruning Strategy for Efficient Alignment of Large Language Models [14.657194214702473]
We propose an efficient algorithm that localizes the most task-sensitive attention heads and prunes them by restricting attention training updates to these heads.<n> Experimental results demonstrate that our method activates only 10% of attention parameters during fine-tuning while achieving a 2% performance improvement over baselines on three tasks.
arXiv Detail & Related papers (2025-05-24T17:19:34Z) - Attention Reallocation: Towards Zero-cost and Controllable Hallucination Mitigation of MLLMs [62.9348974370985]
We propose attention reallocation (AttnReal) to mitigate hallucinations with nearly zero extra cost.<n>Our approach is motivated by the key observations that, MLLM's unreasonable attention distribution causes features to be dominated by historical output tokens.<n>Based on the observations, AttnReal recycles excessive attention from output tokens and reallocates it to visual tokens, which reduces MLLM's reliance on language priors.
arXiv Detail & Related papers (2025-03-11T11:52:37Z) - RSQ: Learning from Important Tokens Leads to Better Quantized LLMs [65.5558181902098]
Layer-wise quantization is a key technique for efficiently compressing large models without expensive retraining.<n>We propose RSQ (Rotate, Scale, then Quantize), which applies rotations to the model to mitigate outliers.<n>We demonstrate that RSQ consistently outperforms baseline methods across multiple downstream tasks and three model families.
arXiv Detail & Related papers (2025-03-03T18:46:33Z) - Tactic: Adaptive Sparse Attention with Clustering and Distribution Fitting for Long-Context LLMs [10.52833484759311]
We propose Tactic, a sparsity-adaptive and calibration-free sparse attention mechanism.<n>It dynamically selects tokens based on their cumulative attention scores rather than a fixed token budget.<n>We show that Tactic outperforms existing sparse attention algorithms, achieving superior accuracy and up to 7.29x decode attention speedup.
arXiv Detail & Related papers (2025-02-17T08:39:43Z) - AttentionPredictor: Temporal Pattern Matters for Efficient LLM Inference [51.1972443343829]
We propose AttentionPredictor, which is the first learning-based critical token identification approach.<n> AttentionPredictor accurately predicts the attention score while consuming negligible memory.<n>We also propose a cross-token critical cache prefetching framework that hides the token time overhead to accelerate the decoding stage.
arXiv Detail & Related papers (2025-02-06T13:41:46Z) - Critical Tokens Matter: Token-Level Contrastive Estimation Enhances LLM's Reasoning Capability [53.51560766150442]
Critical tokens are elements within reasoning trajectories that significantly influence incorrect outcomes.<n>We present a novel framework for identifying these tokens through rollout sampling.<n>We show that identifying and replacing critical tokens significantly improves model accuracy.
arXiv Detail & Related papers (2024-11-29T18:58:22Z) - Fine-Tuning on Diverse Reasoning Chains Drives Within-Inference CoT Refinement in LLMs [63.36637269634553]
We introduce a novel approach where LLMs are fine-tuned to generate a sequence of Diverse Chains of Thought (DCoT) within a single inference step.<n>We show that fine-tuning on DCoT improves performance over the CoT baseline across model families and scales.<n>Our work is also significant because both quantitative analyses and manual evaluations reveal the observed gains stem from the models' ability to refine an initial reasoning chain.
arXiv Detail & Related papers (2024-07-03T15:01:18Z) - Unveiling and Harnessing Hidden Attention Sinks: Enhancing Large Language Models without Training through Attention Calibration [15.36841874118801]
We aim to provide a more profound understanding of the existence of attention sinks within large language models (LLMs)
We propose a training-free Attention Technique (ACT) that automatically optimize the attention distributions on the fly during inference in an input-adaptive manner.
ACT achieves an average improvement of up to 7.30% in accuracy across different datasets when applied to Llama-30B.
arXiv Detail & Related papers (2024-06-22T07:00:43Z) - Fortify the Shortest Stave in Attention: Enhancing Context Awareness of Large Language Models for Effective Tool Use [74.72150542395487]
An inherent waveform pattern in the attention allocation of large language models (LLMs) significantly affects their performance in tasks demanding a high degree of context awareness.
To address this issue, we propose a novel inference method named Attention Buckets.
arXiv Detail & Related papers (2023-12-07T17:24:51Z) - Prompting classes: Exploring the Power of Prompt Class Learning in
Weakly Supervised Semantic Segmentation [15.467510304266883]
We study the impact of prompt tuning on weakly supervised semantic segmentation.
We introduce a novel approach based on a PrOmpt cLass lEarning (POLE) strategy.
We demonstrate that our simple, yet efficient approach achieves SOTA performance in a well-known WSSS benchmark.
arXiv Detail & Related papers (2023-06-30T19:25:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.