Improving Medium Range Severe Weather Prediction through Transformer Post-processing of AI Weather Forecasts
- URL: http://arxiv.org/abs/2505.11750v2
- Date: Tue, 20 May 2025 17:42:26 GMT
- Title: Improving Medium Range Severe Weather Prediction through Transformer Post-processing of AI Weather Forecasts
- Authors: Zhanxiang Hua, Ryan Sobash, David John Gagne II, Yingkai Sha, Alexandra Anderson-Frey,
- Abstract summary: This study introduces a novel approach leveraging decoder-only transformer networks to post-process AI-based weather forecasts.<n>Our method treats forecast lead times as sequential tokens'', enabling the transformer to learn complex temporal relationships.<n>Results demonstrate that the transformer-based post-processing significantly enhances forecast skill compared to dense neural networks.
- Score: 39.58317527488534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Improving the skill of medium-range (1-8 day) severe weather prediction is crucial for mitigating societal impacts. This study introduces a novel approach leveraging decoder-only transformer networks to post-process AI-based weather forecasts, specifically from the Pangu-Weather model, for improved severe weather guidance. Unlike traditional post-processing methods that use a dense neural network to predict the probability of severe weather using discrete forecast samples, our method treats forecast lead times as sequential ``tokens'', enabling the transformer to learn complex temporal relationships within the evolving atmospheric state. We compare this approach against post-processing of the Global Forecast System (GFS) using both a traditional dense neural network and our transformer, as well as configurations that exclude convective parameters to fairly evaluate the impact of using the Pangu-Weather AI model. Results demonstrate that the transformer-based post-processing significantly enhances forecast skill compared to dense neural networks. Furthermore, AI-driven forecasts, particularly Pangu-Weather initialized from high resolution analysis, exhibit superior performance to GFS in the medium-range, even without explicit convective parameters. Our approach offers improved accuracy, and reliability, which also provides interpretability through feature attribution analysis, advancing medium-range severe weather prediction capabilities.
Related papers
- Improving Predictions of Convective Storm Wind Gusts through Statistical Post-Processing of Neural Weather Models [0.07710102716793873]
Recent advancements in Neural Weather Models (NWMs) offer a computationally inexpensive and fast approach for forecasting atmospheric environments on a 0.25deg global grid.<n>For thunderstorms, these environments can be empirically post-processed to predict wind gust distributions at specific locations.<n>With the Pangu-Weather NWM, we apply a hierarchy of statistical and deep learning post-processing methods to forecast hourly wind gusts up to three days ahead.
arXiv Detail & Related papers (2025-03-31T18:25:35Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
Severe convective storms are among the most dangerous weather phenomena and accurate forecasts mitigate their impacts.
Recently released suite of AI-based weather models produces medium-range forecasts within seconds.
We assess the forecast skill of three top-performing AI-models for convective parameters against reanalysis and ECMWF's operational numerical weather prediction model IFS.
arXiv Detail & Related papers (2024-06-13T07:46:03Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
We present an AI-based data assimilation model, i.e., Adas, for global weather variables.
We demonstrate that Adas can assimilate global observations to produce high-quality analysis, enabling the system operate stably for long term.
We are the first to apply the methods to real-world scenarios, which is more challenging and has considerable practical application potential.
arXiv Detail & Related papers (2023-12-18T09:05:28Z) - Scaling transformer neural networks for skillful and reliable medium-range weather forecasting [23.249955524044392]
We introduce Stormer, a state-of-the-art performance on weather forecasting with minimal changes to the standard transformer backbone.
At the core of Stormer is a randomized forecasting objective that trains the model to forecast the weather dynamics over varying time intervals.
On WeatherBench 2, Stormer performs competitively at short to medium-range forecasts and outperforms current methods beyond 7 days.
arXiv Detail & Related papers (2023-12-06T19:46:06Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Generative ensemble deep learning severe weather prediction from a
deterministic convection-allowing model [0.0]
Method combines conditional generative adversarial networks (CGANs) with a convolutional neural network (CNN) to post-process convection-allowing model (CAM) forecasts.
The CGANs are designed to create synthetic ensemble members from deterministic CAM forecasts.
The method produced skillful predictions with up to 20% Brier Skill Score (BSS) increases compared to other neural-network-based reference methods.
arXiv Detail & Related papers (2023-10-09T18:02:11Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
We present Pangu-Weather, a deep learning based system for fast and accurate global weather forecast.
For the first time, an AI-based method outperforms state-of-the-art numerical weather prediction (NWP) methods in terms of accuracy.
Pangu-Weather supports a wide range of downstream forecast scenarios, including extreme weather forecast and large-member ensemble forecast in real-time.
arXiv Detail & Related papers (2022-11-03T17:19:43Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Machine learning methods for postprocessing ensemble forecasts of wind
gusts: A systematic comparison [0.0]
Postprocessing ensemble weather predictions to correct systematic errors has become a standard practice in research and operations.
Here, we provide a comprehensive review and systematic comparison of eight statistical and machine learning methods for probabilistic wind gust forecasting.
We propose a flexible framework of locally adaptive neural networks with different probabilistic forecast types as output.
arXiv Detail & Related papers (2021-06-17T14:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.