Residual Feature Integration is Sufficient to Prevent Negative Transfer
- URL: http://arxiv.org/abs/2505.11771v1
- Date: Sat, 17 May 2025 00:36:59 GMT
- Title: Residual Feature Integration is Sufficient to Prevent Negative Transfer
- Authors: Yichen Xu, Ryumei Nakada, Linjun Zhang, Lexin Li,
- Abstract summary: We propose Residual Feature Integration (REFINE), a simple yet effective method designed to mitigate negative transfer.<n>Our approach combines a fixed source-side representation with a trainable target-side encoder and fits a shallow neural network on the resulting joint representation.<n> Empirically, we show that REFINE consistently enhances performance across diverse application and data modalities.
- Score: 16.047084318753377
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transfer learning typically leverages representations learned from a source domain to improve performance on a target task. A common approach is to extract features from a pre-trained model and directly apply them for target prediction. However, this strategy is prone to negative transfer where the source representation fails to align with the target distribution. In this article, we propose Residual Feature Integration (REFINE), a simple yet effective method designed to mitigate negative transfer. Our approach combines a fixed source-side representation with a trainable target-side encoder and fits a shallow neural network on the resulting joint representation, which adapts to the target domain while preserving transferable knowledge from the source domain. Theoretically, we prove that REFINE is sufficient to prevent negative transfer under mild conditions, and derive the generalization bound demonstrating its theoretical benefit. Empirically, we show that REFINE consistently enhances performance across diverse application and data modalities including vision, text, and tabular data, and outperforms numerous alternative solutions. Our method is lightweight, architecture-agnostic, and robust, making it a valuable addition to the existing transfer learning toolbox.
Related papers
- Transfer Learning through Enhanced Sufficient Representation: Enriching Source Domain Knowledge with Target Data [2.308168896770315]
We introduce a novel method for transfer learning called Transfer learning through Enhanced Sufficient Representation (TESR)<n>Our approach begins by estimating a sufficient and invariant representation from the source domains.<n>This representation is then enhanced with an independent component derived from the target data, ensuring that it is sufficient for the target domain and adaptable to its specific characteristics.
arXiv Detail & Related papers (2025-02-22T13:18:28Z) - Transfer Learning of Surrogate Models: Integrating Domain Warping and Affine Transformations [4.515998639772672]
Surrogate models provide efficient alternatives to computationally demanding real world processes.<n>Previous studies have investigated the transfer of differentiable and non-differentiable surrogate models.<n>This paper extends previous research by addressing a broader range of transformations.
arXiv Detail & Related papers (2025-01-30T13:46:48Z) - Rethinking Weak-to-Strong Augmentation in Source-Free Domain Adaptive Object Detection [38.596886094105216]
Source-Free domain adaptive Object Detection (SFOD) aims to transfer a detector (pre-trained on source domain) to new unlabelled target domains.
This paper introduces a novel Weak-to-Strong Contrastive Learning (WSCoL) approach.
arXiv Detail & Related papers (2024-10-07T23:32:06Z) - Robust Transfer Learning with Unreliable Source Data [11.813197709246289]
We introduce a novel quantity called the ''ambiguity level'' that measures the discrepancy between the target and source regression functions.<n>We propose a simple transfer learning procedure, and establish a general theorem that shows how this new quantity is related to the transferability of learning.
arXiv Detail & Related papers (2023-10-06T21:50:21Z) - RAIN: RegulArization on Input and Network for Black-Box Domain
Adaptation [80.03883315743715]
Source-free domain adaptation transits the source-trained model towards target domain without exposing the source data.
This paradigm is still at risk of data leakage due to adversarial attacks on the source model.
We propose a novel approach named RAIN (RegulArization on Input and Network) for Black-Box domain adaptation from both input-level and network-level regularization.
arXiv Detail & Related papers (2022-08-22T18:18:47Z) - Balancing Discriminability and Transferability for Source-Free Domain
Adaptation [55.143687986324935]
Conventional domain adaptation (DA) techniques aim to improve domain transferability by learning domain-invariant representations.
The requirement of simultaneous access to labeled source and unlabeled target renders them unsuitable for the challenging source-free DA setting.
We derive novel insights to show that a mixup between original and corresponding translated generic samples enhances the discriminability-transferability trade-off.
arXiv Detail & Related papers (2022-06-16T09:06:22Z) - A Curriculum-style Self-training Approach for Source-Free Semantic Segmentation [91.13472029666312]
We propose a curriculum-style self-training approach for source-free domain adaptive semantic segmentation.
Our method yields state-of-the-art performance on source-free semantic segmentation tasks for both synthetic-to-real and adverse conditions.
arXiv Detail & Related papers (2021-06-22T10:21:39Z) - KL Guided Domain Adaptation [88.19298405363452]
Domain adaptation is an important problem and often needed for real-world applications.
A common approach in the domain adaptation literature is to learn a representation of the input that has the same distributions over the source and the target domain.
We show that with a probabilistic representation network, the KL term can be estimated efficiently via minibatch samples.
arXiv Detail & Related papers (2021-06-14T22:24:23Z) - Latent-Optimized Adversarial Neural Transfer for Sarcasm Detection [50.29565896287595]
We apply transfer learning to exploit common datasets for sarcasm detection.
We propose a generalized latent optimization strategy that allows different losses to accommodate each other.
In particular, we achieve 10.02% absolute performance gain over the previous state of the art on the iSarcasm dataset.
arXiv Detail & Related papers (2021-04-19T13:07:52Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.