AnalyticKWS: Towards Exemplar-Free Analytic Class Incremental Learning for Small-footprint Keyword Spotting
- URL: http://arxiv.org/abs/2505.11817v1
- Date: Sat, 17 May 2025 03:55:28 GMT
- Title: AnalyticKWS: Towards Exemplar-Free Analytic Class Incremental Learning for Small-footprint Keyword Spotting
- Authors: Yang Xiao, Tianyi Peng, Rohan Kumar Das, Yuchen Hu, Huiping Zhuang,
- Abstract summary: Keywords spotting (KWS) offers a vital mechanism to identify spoken commands in voice-enabled systems.<n>A major problem is catastrophic forgetting, where models lose their ability to recognize earlier keywords.<n>We propose an exemplar-free Analytic Continual Learning (AnalyticKWS) method that updates model parameters without revisiting earlier data.
- Score: 29.303650401396997
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Keyword spotting (KWS) offers a vital mechanism to identify spoken commands in voice-enabled systems, where user demands often shift, requiring models to learn new keywords continually over time. However, a major problem is catastrophic forgetting, where models lose their ability to recognize earlier keywords. Although several continual learning methods have proven their usefulness for reducing forgetting, most existing approaches depend on storing and revisiting old data to combat catastrophic forgetting. Though effective, these methods face two practical challenges: 1) privacy risks from keeping user data and 2) large memory and time consumption that limit deployment on small devices. To address these issues, we propose an exemplar-free Analytic Continual Learning (AnalyticKWS) method that updates model parameters without revisiting earlier data. Inspired by efficient learning principles, AnalyticKWS computes a closed-form analytical solution for model updates and requires only a single epoch of adaptation for incoming keywords. AnalyticKWS demands fewer computational resources by avoiding gradient-based updates and does not store old data. By eliminating the need for back-propagation during incremental learning, the model remains lightweight and efficient. As a result, AnalyticKWS meets the challenges mentioned earlier and suits resource-limited settings well. Extensive experiments on various datasets and settings show that AnalyticKWS consistently outperforms existing continual learning methods.
Related papers
- An Efficient Continual Learning Framework for Multivariate Time Series Prediction Tasks with Application to Vehicle State Estimation [11.197937792525684]
We present EM-ReSeleCT, an enhanced approach to handle continual learning in time series tasks.<n>Our approach strategically selects representative subsets from old and historical data.<n>We also develop a sequence-to-sequence transformer model (autoregressive model) specifically designed for vehicle state estimation.
arXiv Detail & Related papers (2025-03-03T15:42:06Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
We introduce the Iterative Contrastive Unlearning (ICU) framework, which consists of three core components.<n>A Knowledge Unlearning Induction module targets specific knowledge for removal using an unlearning loss.<n>A Contrastive Learning Enhancement module preserves the model's expressive capabilities against the pure unlearning goal.<n>An Iterative Unlearning Refinement module dynamically adjusts the unlearning process through ongoing evaluation and updates.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Test-Time Adaptation for Combating Missing Modalities in Egocentric Videos [92.38662956154256]
Real-world applications often face challenges with incomplete modalities due to privacy concerns, efficiency needs, or hardware issues.<n>We propose a novel approach to address this issue at test time without requiring retraining.<n>MiDl represents the first self-supervised, online solution for handling missing modalities exclusively at test time.
arXiv Detail & Related papers (2024-04-23T16:01:33Z) - Embedding-Informed Adaptive Retrieval-Augmented Generation of Large Language Models [37.02290559379761]
Retrieval-augmented large language models (LLMs) have been remarkably competent in various NLP tasks.<n>Motivated by this, Adaptive Retrieval-Augmented Generation (ARAG) studies retrieving only when the knowledge asked by the query is absent in the LLM.
arXiv Detail & Related papers (2024-04-04T15:21:22Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
Key challenge in the continual learning setting is to efficiently learn a sequence of tasks without forgetting how to perform previously learned tasks.
We propose a new method for efficient continual learning of sparse models (EsaCL) that can automatically prune redundant parameters without adversely impacting the model's predictive power.
arXiv Detail & Related papers (2024-01-11T04:59:44Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
Large pre-trained models can dramatically reduce the amount of task-specific data required to solve a problem, but they often fail to capture domain-specific nuances out of the box.
This paper shows how to leverage recent advances in NLP and multi-modal learning to augment a pre-trained model with search engine retrieval.
arXiv Detail & Related papers (2023-11-29T05:33:28Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - PIVOT: Prompting for Video Continual Learning [50.80141083993668]
We introduce PIVOT, a novel method that leverages extensive knowledge in pre-trained models from the image domain.
Our experiments show that PIVOT improves state-of-the-art methods by a significant 27% on the 20-task ActivityNet setup.
arXiv Detail & Related papers (2022-12-09T13:22:27Z) - Learning from Few Examples: A Summary of Approaches to Few-Shot Learning [3.6930948691311016]
Few-Shot Learning refers to the problem of learning the underlying pattern in the data just from a few training samples.
Deep learning solutions suffer from data hunger and extensively high computation time and resources.
Few-shot learning that could drastically reduce the turnaround time of building machine learning applications emerges as a low-cost solution.
arXiv Detail & Related papers (2022-03-07T23:15:21Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.