MT-CYP-Net: Multi-Task Network for Pixel-Level Crop Yield Prediction Under Very Few Samples
- URL: http://arxiv.org/abs/2505.12069v1
- Date: Sat, 17 May 2025 16:20:44 GMT
- Title: MT-CYP-Net: Multi-Task Network for Pixel-Level Crop Yield Prediction Under Very Few Samples
- Authors: Shenzhou Liu, Di Wang, Haonan Guo, Chengxi Han, Wenzhi Zeng,
- Abstract summary: We propose a novel approach called the Multi-Task Crop Yield Prediction Network (MT-CYP-Net)<n>This framework introduces an effective multi-task feature-sharing strategy, where features extracted from a shared backbone network are simultaneously utilized by both crop yield prediction decoders and crop classification decoders.<n>This design allows MT-CYP-Net to be trained with extremely sparse crop yield point labels and crop type labels, while still generating detailed pixel-level crop yield maps.
- Score: 5.547023223870711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and fine-grained crop yield prediction plays a crucial role in advancing global agriculture. However, the accuracy of pixel-level yield estimation based on satellite remote sensing data has been constrained by the scarcity of ground truth data. To address this challenge, we propose a novel approach called the Multi-Task Crop Yield Prediction Network (MT-CYP-Net). This framework introduces an effective multi-task feature-sharing strategy, where features extracted from a shared backbone network are simultaneously utilized by both crop yield prediction decoders and crop classification decoders with the ability to fuse information between them. This design allows MT-CYP-Net to be trained with extremely sparse crop yield point labels and crop type labels, while still generating detailed pixel-level crop yield maps. Concretely, we collected 1,859 yield point labels along with corresponding crop type labels and satellite images from eight farms in Heilongjiang Province, China, in 2023, covering soybean, maize, and rice crops, and constructed a sparse crop yield label dataset. MT-CYP-Net is compared with three classical machine learning and deep learning benchmark methods in this dataset. Experimental results not only indicate the superiority of MT-CYP-Net compared to previous methods on multiple types of crops but also demonstrate the potential of deep networks on precise pixel-level crop yield prediction, especially with limited data labels.
Related papers
- WeedsGalore: A Multispectral and Multitemporal UAV-based Dataset for Crop and Weed Segmentation in Agricultural Maize Fields [0.7421845364041001]
Weeds are one of the major reasons for crop yield loss but current weeding practices fail to manage weeds in an efficient and targeted manner.<n>We present a novel dataset for semantic and instance segmentation of crops and weeds in agricultural maize fields.
arXiv Detail & Related papers (2025-02-18T18:13:19Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNet is a dataset for mapping the presence of farms in the Ethiopian regions of Tigray and Amhara during 2020-2023.
We introduce a new approach based on the detection of harvest piles characteristic of many smallholder systems.
We conclude that remote sensing of harvest piles can contribute to more timely and accurate cropland assessments in food insecure regions.
arXiv Detail & Related papers (2023-08-23T11:03:28Z) - Boosting Crop Classification by Hierarchically Fusing Satellite,
Rotational, and Contextual Data [0.0]
We propose a novel approach to fuse multimodal information into a model for improved accuracy and robustness across multiple years and countries.
To evaluate our approach, we release a new annotated dataset of 7.4 million agricultural parcels in France and Netherlands.
arXiv Detail & Related papers (2023-05-19T21:42:53Z) - Productive Crop Field Detection: A New Dataset and Deep Learning
Benchmark Results [1.2233362977312945]
In precision agriculture, detecting productive crop fields is an essential practice that allows the farmer to evaluate operating performance.
Previous studies explore different methods to detect crop fields using advanced machine learning algorithms.
We propose a high-quality dataset generated by machine operation combined with Sentinel-2 images.
arXiv Detail & Related papers (2023-05-19T20:30:59Z) - Generative models-based data labeling for deep networks regression:
application to seed maturity estimation from UAV multispectral images [3.6868861317674524]
Monitoring seed maturity is an increasing challenge in agriculture due to climate change and more restrictive practices.
Traditional methods are based on limited sampling in the field and analysis in laboratory.
We propose a method for estimating parsley seed maturity using multispectral UAV imagery, with a new approach for automatic data labeling.
arXiv Detail & Related papers (2022-08-09T09:06:51Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - WheatNet: A Lightweight Convolutional Neural Network for High-throughput
Image-based Wheat Head Detection and Counting [12.735055892742647]
We propose a novel deep learning framework to accurately and efficiently count wheat heads to aid in the gathering of real-time data for decision making.
We call our model WheatNet and show that our approach is robust and accurate for a wide range of environmental conditions of the wheat field.
Our proposed method achieves an MAE and RMSE of 3.85 and 5.19 in our wheat head counting task, respectively, while having significantly fewer parameters when compared to other state-of-the-art methods.
arXiv Detail & Related papers (2021-03-17T02:38:58Z) - A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows
from UAV Imagery [56.10033255997329]
We propose a novel deep learning method based on a Convolutional Neural Network (CNN)
It simultaneously detects and geolocates plantation-rows while counting its plants considering highly-dense plantation configurations.
The proposed method achieved state-of-the-art performance for counting and geolocating plants and plant-rows in UAV images from different types of crops.
arXiv Detail & Related papers (2020-12-31T18:51:17Z) - Semi-supervised deep learning based on label propagation in a 2D
embedded space [117.9296191012968]
Proposed solutions propagate labels from a small set of supervised images to a large set of unsupervised ones to train a deep neural network model.
We present a loop in which a deep neural network (VGG-16) is trained from a set with more correctly labeled samples along iterations.
As the labeled set improves along iterations, it improves the features of the neural network.
arXiv Detail & Related papers (2020-08-02T20:08:54Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
We propose a two-stage framework, with the first stage to quickly localize the prostate region and the second stage to precisely segment the prostate.
We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network.
Our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss.
arXiv Detail & Related papers (2020-05-15T10:37:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.