Model Merging in Pre-training of Large Language Models
- URL: http://arxiv.org/abs/2505.12082v3
- Date: Thu, 22 May 2025 09:35:43 GMT
- Title: Model Merging in Pre-training of Large Language Models
- Authors: Yunshui Li, Yiyuan Ma, Shen Yan, Chaoyi Zhang, Jing Liu, Jianqiao Lu, Ziwen Xu, Mengzhao Chen, Minrui Wang, Shiyi Zhan, Jin Ma, Xunhao Lai, Deyi Liu, Yao Luo, Xingyan Bin, Hongbin Ren, Mingji Han, Wenhao Hao, Bairen Yi, LingJun Liu, Bole Ma, Xiaoying Jia, Xun Zhou, Siyuan Qiao, Liang Xiang, Yonghui Wu,
- Abstract summary: We present a comprehensive investigation of model merging techniques during the pre-training process.<n>We show that merging checkpoints trained with constant learning rates achieves significant performance improvements.<n>We offer the open-source community practical pre-training guidelines for effective model merging.
- Score: 39.413435498849445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model merging has emerged as a promising technique for enhancing large language models, though its application in large-scale pre-training remains relatively unexplored. In this paper, we present a comprehensive investigation of model merging techniques during the pre-training process. Through extensive experiments with both dense and Mixture-of-Experts (MoE) architectures ranging from millions to over 100 billion parameters, we demonstrate that merging checkpoints trained with constant learning rates not only achieves significant performance improvements but also enables accurate prediction of annealing behavior. These improvements lead to both more efficient model development and significantly lower training costs. Our detailed ablation studies on merging strategies and hyperparameters provide new insights into the underlying mechanisms while uncovering novel applications. Through comprehensive experimental analysis, we offer the open-source community practical pre-training guidelines for effective model merging.
Related papers
- LoRE-Merging: Exploring Low-Rank Estimation For Large Language Model Merging [10.33844295243509]
We propose a unified framework for model merging based on low-rank estimation of task vectors without the need for access to the base model, named textscLoRE-Merging.<n>Our approach is motivated by the observation that task vectors from fine-tuned models frequently exhibit a limited number of dominant singular values, making low-rank estimations less prone to interference.
arXiv Detail & Related papers (2025-02-15T10:18:46Z) - How do Machine Learning Models Change? [7.543685248926161]
This study utilizes both repository mining and longitudinal analysis methods to examine over 200,000 commits and 1,200 releases from over 50,000 models on Hugging Face (HF)
We replicate and extend an ML change taxonomy for classifying commits and utilize Bayesian networks to uncover patterns in commit and release activities over time.
Our findings indicate that commit activities align with established data science methodologies, such as CRISP-DM, emphasizing iterative refinement and continuous improvement.
Additionally, release patterns tend to consolidate significant updates, particularly in documentation, distinguishing between granular changes and milestone-based releases.
arXiv Detail & Related papers (2024-11-14T18:14:32Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
Model merging is an efficient empowerment technique in the machine learning community.
There is a significant gap in the literature regarding a systematic and thorough review of these techniques.
arXiv Detail & Related papers (2024-08-14T16:58:48Z) - The Fine Line: Navigating Large Language Model Pretraining with Down-streaming Capability Analysis [27.310894780313618]
This paper undertakes a comprehensive comparison of model capabilities at various pretraining intermediate checkpoints.
We confirm that specific downstream metrics exhibit similar training dynamics across models of different sizes.
In addition to our core findings, we've reproduced Amber and OpenLLaMA, releasing their intermediate checkpoints.
arXiv Detail & Related papers (2024-04-01T16:00:01Z) - Mixtures of Experts Unlock Parameter Scaling for Deep RL [54.26191237981469]
In this paper, we demonstrate that incorporating Mixture-of-Expert (MoE) modules into value-based networks results in more parameter-scalable models.
This work thus provides strong empirical evidence towards developing scaling laws for reinforcement learning.
arXiv Detail & Related papers (2024-02-13T17:18:56Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
We introduce emulated fine-tuning (EFT), a principled and practical method for sampling from a distribution that approximates the result of pre-training and fine-tuning at different scales.
We show that EFT enables test-time adjustment of competing behavioral traits like helpfulness and harmlessness without additional training.
Finally, a special case of emulated fine-tuning, which we call LM up-scaling, avoids resource-intensive fine-tuning of large pre-trained models by ensembling them with small fine-tuned models.
arXiv Detail & Related papers (2023-10-19T17:57:16Z) - Sample Efficient Reinforcement Learning via Model-Ensemble Exploration
and Exploitation [3.728946517493471]
MEEE is a model-ensemble method that consists of optimistic exploration and weighted exploitation.
Our approach outperforms other model-free and model-based state-of-the-art methods, especially in sample complexity.
arXiv Detail & Related papers (2021-07-05T07:18:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.